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ABSTRACT 
 
Software is becoming a critical part of many computer-based systems. The range of systems 
that require software is growing every day given that software provides a flexible and 
powerful way to codify complex behaviors. Newer software systems have stricter 
dependability requirements such as safety, availability, reliability, and integrity. 
 
The early assessment of system attributes, such as performance or reliability, provides 
information to improve the system design and its development process. Early assessment 
results in schedule and costs savings, and in system quality and performance improvements. 
The term “early” means that the assessment is performed before the actual construction of the 
system.  
 
The objective of this research is to produce an early reliability assessment of a sequential 
assembly of software components using limited component execution-related information 
and considering the expected assembly use. Accomplishing this objective provides 
quantitative means to support design decisions and to improve the component selection 
process. The execution-related information, called execution traces, is gathered during the 
component testing process.  
 
This research is motivated by the need of methodological frameworks addressing the early 
reliability assessment problem in practical settings. Practical settings have characteristics 
such as the limited information of the testing process, an increasing number of mandatory 
software dependability requirements, and the popular use of software development methods 
such as the Component-Based Software Development and Software Architecture-Based 
Development. 
 
This research has produced a novel methodological framework, named the Test Profile 
Analysis Framework (TPAF), to produce early reliability assessments of software 
assemblies. TPAF has four phases: component testing phase, assembly operational 
specification phase, execution composition phase, and reliability assessment phase. Each 
phase has artifacts and models which provide practical, semantic, and analytic foundations 
for the reliability assessment.  
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During the component testing phase, the Component Test Profiles (CTPs) are built. A CTP 
includes test cases, test results, a component specification, and a set of execution traces of 
one component. An execution trace is a sequence of visited abstract nodes in each test case. 
An abstract node represents blocks of source code statements derived from a control-flow 
static analysis. Execution traces are dynamically collected with a run-time monitoring 
infrastructure together with an instrumented executable version of the component. 
 
During the assembly operational specification phase, the Assembly Operational Profile 
(AOP) is built. AOP is a quantitative assembly use characterization. This artifact is used to 
weight the reliability assessment. AOP is specified using a UML profile that was created for 
such purpose and it is referred to as the UML Operational Characterization profile.   
 
During the execution composition phase, the Assembly Test Profile (ATP) is built. ATP is a 
composite CTP derived from a sequential assembly of CTPs. The composition uses an ad-
hoc formal composition model that matches test cases from different components to produce 
the composite CTP. Since CTPs have a limited number of test cases, it is possible to have test 
cases without matching during the composition process. To address this issue, the formal 
composition model includes a strategy to select the most appropriate execution prediction 
technique to predict the missing matches between components. The prediction techniques 
considered in the framework are artificial neural networks, classification trees, and the best 
binary matching technique.  
 
During the reliability assessment phase, an ad-hoc reliability model combines the 
information from the ATP with the AOP to assess the reliability of a software assembly. This 
model is built on the top of the composition execution model and produces an early 
reliability estimate and the corresponding confidence interval.  
 
The tool TP-Toolset is a partially automated analysis environment to perform the assembly 
reliability assessment. TP-Toolset has been used in two case studies to test and evaluate the 
framework. The results show that the framework produces a meaningful early assembly 
reliability assessment that is consistent with the expected usage and the execution-related 
information. This framework is unique since it focuses on early reliability assessment of a 
software assembly using a novel approach to compose limited component testing 
information, component execution information, and the expected assembly usage.  
 
In addition, TPAF provides the foundation to define methodologies for assessing other sorts 
of assemblies using other architectural approaches and assessing other attributes that can be 
analyzed using information from the component test profiles.  
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Chapter 1  


Introduction  


The goal of this chapter is to provide a summary of the entire dissertation. Additionally, this 
chapter includes the motivation behind this research effort, a description of the problem 
addressed, and an overview of the proposed solution, results, and future research works.  
 


1.1 Motivation 
The software is becoming a critical element in modern systems. The range of applications 
that require software is growing every day because software provides a flexible and powerful 
way to codify complex behaviors. It is common to hear that appliances or complex devices 
contain a large portion of software.  We are becoming more dependent on software 
(Littlewood and Strigini 2000) (Humphrey 2002). 
 
The size and complexity of applications demand more powerful software solutions. These 
solutions include the fulfillment of requirements about safety, reliability, security, quality, 
cost, and project related attributes. For example, the automobile software, that controls the 
automobile engine, may emphasize concerns about safety and reliability attributes rather than 
security attributes. 
 
Software reliability is an important attribute that quantitatively characterizes the quality of a 
system (Musa 2004b). Software reliability is the probability of performing a specified 
function without failure under given conditions for a specified period of time (IEEE 1998). In 
addition, reliability is a powerful indicator of the quality of the system since it can group 
several characteristics into a single measurement. In other words, system non-conformities 
are modeled as failures thereby allowing comprehensive reliability analysis.  
 
Reliability is an attribute that has been studied for more than 30 years. There are several 
works and techniques to predict or to estimate the reliability of non-software applications 
(Komi-Sirvio et al.,  2003) (Lyu 1996). However, the use of such techniques for software 
requires considering the nature of software. Software reliability has special characteristics 
that differentiate it from hardware reliability, such as the origin of failure and the 
assumptions about the environmental conditions.  
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First, the origin of failure in non-software products is usually associated with physical 
degradation (i.e., the randomness of the failure is associated with physical degradation). In 
contrast, the randomness of the failure in software-based products is associated with the use 
of the system. For example, the failure in a mechanical device is originated by the physical 
degradation associated with the mechanical parts. In a software-based product, the failure 
does not depend on the number of times that a specific software function is activated; it is 
possible to have an endless operation without a failure if only some input values are used for 
the function. The failure is originated when other values are used and such values generate a 
failure.  
 
Second, the assumptions about the environmental conditions of the product, that are provided 
by the product maker, are similar or covered by the environmental conditions required by the 
customer or product user. In contrast, for software-based products, the size and complexity of 
systems is high and it is very difficult to state the same covering assumption. For example, 
tire manufacturers set their environmental conditions to exceed the conditions that any user 
may require. However, the case for software is more complex, since the failure may be 
located not only in boundary values but also in other allowed values. Then, it is not possible 
to provide the same covering guarantee without having a comprehensive testing process. 
 
Additionally, the assumptions that software reliability models make do not address the 
complexities of most software, resulting in far less adoption of theory into practice than is 
possible. Even though reliability models are quantitative, the industry only uses these results 
qualitatively. An example of this use is testing. When the failure rate falls below X according 
to a particular reliability model, testing stops, but developers and users cannot assume that 
the software will always behave with such failure rate less than X in the field (Whittaker and 
Voas 2000). The reasons behind this situation include the limited capability of testing to find 
failures, the test data generation complexity, and the high heterogeneity of operational 
environments. 
 
One approach for estimating the reliability of complex non-software systems is by using the 
information from the components of the system (i.e., using a divide-and-conquer approach). 
This approach allows handling complex systems by using high-level models based on 
components. Then, the reliability analysis is simplified by using information form the 
components and combining such information into a system model (Shelemyahu and Kenett 
1998) (Hoyland and Rausand 2003).  
 
The divide-and-conquer approach has been used widely in software development with 
success in some aspects including the reuse of software assets and the complexity 
management reduction. Software reuse has focused mostly on reusing functionalities or 
behaviors. Relevant non functional attributes, such as performance and reliability, have been 
recently addressed (Wallnau 2003) (Crnkovic et al.,  2002) (Atkinson et al.,  2002) (Larsson 
2004).  The most common terms for such reusable assets are: functions, procedures, libraries, 
objects, sub-systems, or components. For simplicity, we use the term component to denote all 
kind of reusable software parts.  
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Similar to other non-software domains, the early assessment of attributes of the system, such 
as performance or latency, has been recognized as a powerful strategy to improve the 
software development process (Cortellessa et al.,  2002) (Clements et al.,  2002). The term 
“early” means that the assessment is performed before the actual construction of the system 
and it is based on evidences of the components that will be used in the system. Such 
evidences may come from testing results or formal analyses. This kind of assessment allows 
the evaluation of design alternatives before the actual construction of the system, thereby 
reducing schedule and project costs. This approach has been promoted by several software-
oriented techniques, such as software architecture evaluation methods (Clements et al.,  
2002) (Svahnberg and Wohlin 2005) (Babar and Gorton 2004), predictable assembly 
technologies (Stafford et al.,  2001) (Hissam and Ivers 2002), and several works on project 
estimation  and attribute prediction (Stutzke 2005) (Fenton and Pfleeger 1998).   
 
The effectiveness of any early attribute assessment method generally depends on factors such 
as the specific nature of the attribute and the data required for such analysis. For example, the 
worst- case execution time assessment uses a timing model representing the target processor 
(Thesing 2006). The inputs for this model include parameters obtained from source code 
static analysis. Then, the worst-case execution time model combines such parameters for the 
assessment (Sandberg et al.,  2006).  
 
The early reliability assessment of software-based systems has been addressed by different 
approaches, such as black-box approaches (Goseva-Popstojanova et al.,  2005) (Hamlet et al.,  
2001) (i.e., the internal execution of components is not considered), and white-box 
approaches (Dolbec and Shepard 1995) (i.e., the use of internal information of every 
component is considered). Both approaches have their corresponding advantages and 
disadvantages. For example, white-box approaches generate better assessment of the 
reliability than black-box approaches. However, white-box approaches are difficult and 
expensive to implement in medium and large systems given the amount of information 
required while black-box approaches are simpler and cheaper. 
 
To cope with these challenges, research on techniques, models, and tools to enable early 
assessment of the reliability of software-based systems are important issues to be explored. 
Early assessments are powerful and critical parameters reducing the uncertainty in any 
project. Such importance is recognized in quality process frameworks such as the Capability 
and Maturity Model Integration (CMMi) which defines a process area focused on 
Measurement and Analysis (Team 2006). Additionally, early assessments can be used to 
calibrate more sophisticated estimation models. Early assessment may increase the sources of 
information complementing people experience assessments and historical records.  
 
Furthermore, using gray-box techniques to characterize the complexity of the system may 
help to generate more useful reliability estimations, as it was observed by (Whittaker and 
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Voas 2000). The need for better approaches and techniques to generate meaningful early 
reliability assessments is the main driver of this work that it is worthy to investigate. 
 


1.2 Problem Description and Research Questions 
This section starts defining the basic concepts used in all the chapters. The research context, 
the problem description, and the research significance of this work are discussed. 
 


1.2.1 Basic Definitions 


A domain is a set of all possible values that a set may have. When this concept is related to a 
software function, the input domain is the set of all possible values that the function may use 
as input. The output domain is the set of all possible output values of the function. 
 
A component is a reusable piece of functionality characterized by its input domain and its 
output domain. In this context, a function or procedure is a component. 
 
An assembly is an arrangement of two or more components. The assembly functionality is 
produced by the composition of all component functionalities.  
 
A test point or test case is a set of inputs, execution conditions, and expected results (i.e., set 
of test outputs) developed for a particular objective, such as exercising a particular program 
path or verifying compliance with a specific requirement.  
 
An operational profile is a quantitative characterization of the expected, recorded, or 
predicted use of a particular component, assembly, or system. 
 
Reliability is defined as the ability of a device or system to perform a required function under 
stated conditions for a specified period of time; usually the ability is defined as a probability. 
Software reliability is the case when the device or system is a software-based system. 
 
Reliability assessment is a quantitative evaluation of the reliability of a product, system, or 
portion thereof. Such assessments usually employ mathematical modeling, directly 
applicable results of tests on the product, failure data, and non-statistical engineering 
estimates. 
 
An artifact is one of many kinds of tangible byproducts produced during the development of 
software.  Examples of artifacts include class diagrams, architecture descriptions, test plans, 
and software requirement specifications. 
 
A model is a theoretical construct or conceptual construct that represents something, with a 
set of variables and a set of logical and quantitative relationships between them.  
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1.2.2 Context 


This work is targeted toward the early stages of the software development process when early 
analyses based on models of the system are performed. Examples of such analyses include 
architectural evaluations, model verifications, and model simulations.  
 


 
Figure 1. A Modified Waterfall Software Development Model. 


 
Figure 1 shows a modified version of the waterfall model that includes the Software System 
Architecture phase. This model is a sequential software development process in which 
development is seen as flowing steadily downwards (like a waterfall) through the phases of 
requirement analysis, system architecture, design, implementation, integration, and testing 
(i.e., validation) (Pressman 2005). Other approaches, such as Component-Based 
Development process, share similarities particularly with the Software System Architecture 
Phase (Wallnau et al., 2002a). 
 
The early assessment of attributes takes place in the software system architecture phase. The 
figure expands this phase to show some of the most important activities performed during 
this phase. First, it is required to have a specification that describes what components are 
required and which functionality they will provide. Next, a process to find, evaluate, and 
select components is performed. When there are no candidate components to evaluate, the 
only alternative is the development of such components. The last phase is the analysis of the 
resulting model, which is called the system architecture. The analysis is performed with 
information from component vendors or with the results obtained during the component 
evaluation. 
 
The research presented in this focuses on the software system architecture phase. The 
emphasis is on the system analysis activities with special attention to the reliability 
assessment and the artifacts required for such activity.  
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1.2.3 Problem Statement and Research Questions 


The problem addressed in this work is the reliability assessment of software component 
assemblies, before integration, using limited testing information from every software 
component and information about the expected assembly use.  
 
The main research question derived from the previous problem is stated as follows: 
It is feasible to produce a meaningful reliability assessment of a software component 
assembly, before their actual integration, based on (i) component testing information 
collected in (ii) a limited number of previously executed component test cases and (iii) 
information about the expected assembly usage? 
 
The answer to this question aims to find a solution that could be integrated within a 
development process having a software system architecture phase. It is assumed to have 
reasonable overhead. Item (i) refers to the use of information that may be available from the 
component providers; item (ii) constrains the scenario with a limited number of executed test 
cases that represents a practical scenario; and item (iii) refers to additional information that 
gives a point of reference for any reliability analysis.  


 


1.3 The Test Profile Analysis Framework 
This section describes an overview of the solution proposed to answer the research question 
mentioned in Section 1.2.3. First, the assumptions about the context where the framework 
can be used are described. This information is complemented with a description about the 
scope of this work and the rationale behind the framework. Next, an overview of the 
framework is described. Finally, it is shown how the framework can be used to assess the 
reliability of a software assembly. 


1.3.1 General Assumptions and Scope  


The assumptions and constraints defined for this work are classified into three groups:  
information about the components, information about operational information, and 
information about the assembly specification. 
 
The assumptions on the component information are: 
• The component source code is provided. 
• The component testing information may be provided by the component vendor or it is 


available by other means. This information includes a set of test cases.   
• There are no assumptions regarding randomness in the testing data. Thus, it is possible to 


have bias in the testing information. 
• The results of all component test cases are successful. It means that there are no reported 


failures. 
• The behavior of the component is suitable for being modeled as a set of inputs and 


outputs. 
 
The assumption about the operational information is: 
• It is assumed that operational information about the assembly is available.  
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The assumptions about the assembly specification information are: 
• The architecture is specified by denoting the dependencies between component inputs 


and component outputs.  
• The assemblies covered in this thesis are those assemblies that can be modeled as 


sequential assemblies (i.e., following a data-flow architectural style). 
• The assembly requirements are known. 
 
The scope of this research focuses on providing a framework to assess the reliability of 
software assemblies. The following are out of the scope of this work: 
 
• Generation of random test data. 
• Strategies for obtaining operational information. This research focuses on modeling such 


information rather than means of obtaining the information. 
 
Additional assumptions about technical issues are defined in every chapter. This section only 
describes the general assumptions defined for the framework. 
 


1.3.2 Rationale 


The scenario for the early assessment of a software assembly requires information about the 
components within the assembly. Using values representing component reliabilities do not 
provide enough information as it was exposed in Section 1.1. Thus, more information is 
required to overcome the limited meaning of component reliability values. Such values are 
typically estimated from evidences collected during the development process. Specifically, 
test cases and test results are evidences guarantying the conformity of such assembly. 
 
Test cases and test results are not enough information to generate more meaningful reliability 
estimations. Similar to any benchmark, reliability estimation needs a reference point which is 
used to compare and measure the test coverage factor. This reference is usually defined as the 
component specification. The component specification usually includes the description of the 
functionalities, domains, constrains, protocols, and invariants about the component operation. 
This information represents a black-box specification since it does not show internal 
information regarding the implementation. 
 
This research focuses on using a gray-box approach to characterize the component behavior. 
The reason for this is based on the fact that black-box approaches might not produce accurate 
estimates and white-box approaches might be infeasible given the size and complexity of the 
analysis required. This work proposes to use instead of detailed execution information (i.e., 
white-box approach) an approach based on abstracting the execution (i.e., abstract 
execution). This abstract execution is modeled as sequences of blocks of instructions rather 
than sequences of instructions. The criterion for defining such blocks is by grouping 
instructions defined by distinct execution paths, similarly to the control flow analysis of 
source code (Allen 1970) (Fenton and Pfleeger 1998). The blocks of instructions are named 
as execution nodes and the sequence of execution nodes is named as execution trace. 
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The component test cases, the component specification, and execution traces are organized 
and grouped into a new artifact called the Component Test Profile. This artifact is an 
important part of the framework since it provides the required information for performing the 
reliability assessment. Chapter 4 provides a more detailed description about this artifact and 
how to build it. 
 
One important constraint in the entire approach is the use of operational information to 
provide meaningful reliability assessments for a particular user. This constraint is addressed 
by defining a modeling notation that allows specifying operational information about the 
assembly. This notation provides a set of modeling constructs to specify operational 
information using distinct approaches, such as operation-oriented and data-oriented 
approaches. Chapter 5 provides a more detailed description about the notation and strategy to 
specify operational information.  
 
Given a set of component test profiles, the next issue is the composition of components that 
are required for an assembly. This composition uses the information provided for every 
component (i.e., component test profiles) and focuses only on the required reliability-related 
information. The composition problem has two issues to consider: first, what kind of 
information is combined and how this combination is performed; second, how to address the 
constraint of having only limited testing information.  
 
The first issue is addressed by using the inputs to the reliability model. The key inputs are the 
execution information recorded during the component testing process (i.e., execution traces). 
Intuitively, the composition of components could be done by concatenating the execution 
traces of two components given that there is a match between the output of the first 
component and an input of the second component.  The input-output information is found in 
the corresponding test cases of every component. Then, the composition mechanism is the 
concatenation of execution traces constrained by the existence of matching outputs-inputs 
between the components connections. 
 
The second issue, regarding limited test information, impacts the composition mechanism 
defined previously. It is not feasible to have a large amount of test cases to find an exact 
matching between inputs and outputs. The approach to address this issue is to create a 
prediction model. The nature of such prediction model depends on the nature of the data 
contained within the component test profiles. Depending on the data, some statistical models, 
such as artificial neural networks or classification trees (Duda et al., 2000) are capable of 
functioning as prediction models. Then, the composition mechanism is performed by using 
predicted execution traces. Chapter 6 provides a more detailed description about the 
composition mechanism and execution trace prediction models. 
 
The reliability assessment is based on using the outcome of the composition process and the 
assembly operational information. This assessment uses the execution traces as a source to 
estimate the probability of failure of every execution node. Then, this information is 
combined to generate more general estimates than are weighted with the operational 







 


- 9 - 


information. This estimation generates point and interval estimates of the probability of 
failure of the assembly. 
 
The reliability model defined in the framework can be also used to assess the reliability of 
single components under distinct operational profiles. This estimation is possible since the 
entire model abstracts the assembly as single component. 
 
The ideas described in this section represent a novel strategy to address the problem 
described in Section 1.2.3. The use of execution traces improves the information collected 
during the testing process since it provides a simple behavioral representation of the software 
execution.  Moreover, the composition process follows an innovative approach which builds 
a composite model on top of pieces of information represented by the test cases and 
execution traces. This model addresses the uncertainty associated with the information by 
using prediction models. Finally, the approach described in this section is instantiated into a 
methodological framework suitable for being extended and refined, as described in the next 
section. 
 


1.3.3 Test Profile Analysis Framework Overview 


The previous ideas are organized as a framework based on phases, tasks, artifacts, and 
models. A phase is a group of tasks that produces a specific set of artifacts (i.e., deliverables). 
A phase is composed of tasks and artifacts. A task is a well-defined unit of work. An artifact 
is one of many kinds of tangible products produced during the development of software. A 
model is a set of conceptual constructs that uses Mathematics or other formal language to 
describe the behavior, structure, or properties of specific entities or processes.  
 
The relationship between these elements is as follows: a phase is composed of one or more 
tasks. Every task has a set of one or more required artifacts (i.e, inputs) and a set of produced 
artifacts (i.e., outputs). A model provides the formal foundations within a specific task and it 
may impact the semantics of some artifacts. The graphical symbol (i.e., UML stereotype) for 
every mentioned element is shown in Table 1 (OMG 2007). 
 


Symbol – Stereotype 


 


 


 


 
Table 1. Framework Element Graphical Representation.  


 
Figure 2 shows a diagram representing the flow of tasks, the required and provided artifacts 
for every task, and the corresponding foundation models. Dotted arrows denote required 
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artifacts and solid arrows denote provided or produced artifacts. The dotted square-ended line 
represents the use of a model.  
 
The first phase, the component testing phase, generates the required basic information for the 
reliability assessment. The task within this phase requires three input artifacts: the source 
code of the components, the corresponding test cases, and the component specification. The 
creation of component test profiles requires source code instrumentation (in order to generate 
the binary version of the instrumented component source code), the execution of the 
corresponding test cases, the information collected during the test case execution, and the 
organization of all the resulting information into an artifact called the component test profile. 


 


 
Figure 2. Test Profile Analysis Framework. 


 
The second phase, the operational definition phase, models the operational information of the 
assembly using a standard notation that facilitates reliability assessment. It is not required to 
have a formal input artifact to the base task but it is assumed that some amount of operational 
data is provided. For example, the task focuses on modeling such information by generating a 
consistent model that can be used in subsequent phases. The artifact produced during this 
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phase is called the assembly operational profile. This artifact contains a quantitative model 
about the expected use of the assembly as well as the minimum information required to 
specify the assembly structure. 
 
The third phase, the execution composition phase, composes the information provided by the 
artifacts produced during previous phases. The task within this phase requires as input 
artifacts all the component test profiles as well as the assembly operational profile. During 
this task, the information from the component test profiles is combined to generate a single 
artifact called the assembly test profile. This artifact represents the outcome of combining the 
information by composing execution information and predicting execution. The models 
required in this phase are the composition formalism and the execution trace prediction 
strategy. The composition model is described by a formal model and the prediction model is 
defined by the best prediction model based on distinct prediction approaches (i.e., regression, 
artificial neural networks, classification trees, or the best binary matching technique). 
 
The fourth phase, the reliability assessment phase, assesses the reliability by using the 
information derived from the composition process and the operational information derived 
from the operational modeling. The input artifacts required for the task are the assembly test 
profile and the assembly operational profile. The reliability model defined for this task 
estimates the probability of failure based on occurrence frequencies. These probabilities are 
combined to estimate the probability of failure of every test case. Finally, the reliability 
assessment is performed by weighing the operational information with the corresponding 
probability of failure estimates.  
 
The previous description provides an overview of the most important elements of the 
framework. Chapter 3 provides a more detailed description and justification of the 
framework.  
 


1.3.4 Reliability Prediction Using the Test Profile Analysis Framework  


The framework has been used to assess the reliability of assemblies. This section describes a 
basic example to illustrate how the ideas are instantiated and the how reliability assessment is 
performed. A more a detailed case study is presented in Chapter 8.  
 
The assembly defined for this example is composed of two components. The goal of this 
assembly is the computation of a mathematical function defined as the logarithm of the 
square root of a given integer input X. The assembly required to achieve this goal is 
composed of two components, one to compute the square root of an integer value and the 
second to compute the logarithm of a real value. 
 


 
 


Figure 3. Basic Assembly for Mathematical Computation. 
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The reliability assessment of this assembly is achieved by performing the corresponding task 
defined in the framework. It is assumed that a set of component test cases is given. 
 
First, during the component testing phase the corresponding component test profiles are 
produced. The number of test points for every component is 5000. The instrumentation for 
these components is simple since the size of such components is small. A fragment of both 
component test profiles is shown in Table 2. 


Square Root Component 
Test Data 


Test Case 
Number 


Input 
Value 


Expected Output 
Value 


Execution 
Trace 


Test 
Result 


1 1 1 ABCD Correct 
2 43 6.557438 ABBBBBBBCD Correct 
3 49 7 ABBBBBBBCD Correct 
4 55 7.416198 ABBBBBBBCD Correct 
5 56 7.483315 ABBBBBBBCD Correct 
6 58 7.615773 ABBBBBBBCD Correct 
7 84 9.165152 ABBBBBBBBCD Correct 
8 95 9.746795 ABBBBBBBBCD Correct 
9 106 10.29563 ABBBBBBBBCD Correct 
10 117 10.81665 ABBBBBBBBCD Correct 
11 123 11.09054 ABBBBBBBBCD Correct 
12 130 11.40175 ABBBBBBBBCD Correct 
13 134 11.57584 ABBBBBBBBCD Correct 
14 150 12.24745 ABBBBBBBBCD Correct 
15 154 12.40967 ABBBBBBBBCD Correct 
16 173 13.15295 ABBBBBBBBCD Correct 
17 197 14.03567 ABBBBBBBBCD Correct 
18 220 14.8324 ABBBBBBBBCD Correct 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


  
 


Logarithm Component 
Test Data 


Test Case 
Number 


Input 
Value 


Expected Output 
Value 


Execution 
Trace 


Test 
Result 


1 1.90 0.278754 HJJJJJJJK Correct 
2 2.45 0.389166 HJJJJJJJK Correct 
3 4.27 0.630428 HJJJJJJJK Correct 
4 5.00 0.69897 HJJJJJJJK Correct 
5 5.74 0.758912 HJJJJJJJK Correct 
6 6.94 0.841359 HJJJJJJJK Correct 
7 8.06 0.906335 HJJJJJJJK Correct 
8 9.26 0.966611 HJJJJJJJK Correct 
9 10.09 1.003891 HJJJJJJJK Correct 
10 11.05 1.043362 HJJJJJJJK Correct 
11 11.24 1.050766 HJJJJJJJK Correct 
12 11.93 1.07664 HJJJJJJJK Correct 
13 11.99 1.078819 HJJJJJJJK Correct 
14 12.55 1.1 HJJJJJJJK Correct 
15 13.19 1.120245 HJJJJJJJK Correct 
16 13.73 1.137671 HJJJJJJJK Correct 
17 13.91 1.143327 HJJJJJJJK Correct 
18 14.35 1.156852 HJJJJJJJK Correct 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


  
Table 2. Partial Information from the Component Test Profiles. 


 
Table 2 shows information about the test cases executed in every component. Additionally, 
there is information about the execution that is stored in the column entitled as “Execution 
Trace”. There are four execution nodes defined in the first component (denoted by the capital 
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letters A, B, C, and D); and four execution nodes defined for the second component (denoted 
by the capital letters H, I, J, and K) 
Second, during the operational definition phase, the operational profile for the system is 
defined. The operational profile for these components follows a data-oriented definition since 
the assembly has a simple functionality. Table 3 shows the operational information defined 
for this assembly. This assembly is usually defined by the system architect during the 
Software System Architecture Phase using the development process described in Section 
1.2.2. The assembly operational profile also includes the specification about the component 
dependencies and connections. 
 


Assembly Operational Profile 


 
    


Sub domain 
X 


Lower 
Value 


Upper 
Value 


Probability 


1 0 1000 0.2 
2 1001 15000 0.4 
3 15001 20000 0.3 
4 20001 65535 0.1 


Table 3. Assembly Operational Profile Defined for the Two-Component Assembly. 
 
Third, during the execution Composition phase, information from the test profiles is used to 
generate the assembly test profile. For every component, a prediction model is defined by 
using the test points contained in every component test profile. Next, the composite test 
points are produced using as reference the test points from the first component in the 
assembly. The resulting assembly test profile is shown in Table 4. The average prediction 
error is derived from each prediction model in each component test profile. 
 


Assembly Test Profile 
Test Case 
Number 


Input 
Value 


Execution Trace Average Prediction 
Error % 


1 1 ABCDHJJJJJJJK 20  
2 43 ABBBBBBBCDHJJJJJJJK 20  
3 49 ABBBBBBBCDHJJJJJJJK 20  
4 55 ABBBBBBBCDHJJJJJJJK 20  
5 56 ABBBBBBBCDHJJJJJJJK 20  
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 4. Derived Assembly Test Profile after Composition. 
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Finally, during the last phase, the reliability assessment is performed. This assessment is 
based on the information defined in the assembly test profile as well as the operational 
information provided in the assembly operational profile. The reliability model computes the 
probability of failure of every composite test point defined in the assembly test profile as 
shown in Table 4. These probabilities are combined to estimate the probability of failure of 
every element defined in the operational profile (in this case the operational profile is defined 
as a partition over the input domain of the first component). Table 5 shows the probability of 
failure point estimation for every subdomain. The overall probability of failure is estimated 
by weighting the probabilities associated with every subdomain. The probability of failure is 
1.23x10-2. This point estimation is complemented with an 90% confidence interval 
estimation (1.13x10-2, 1.35x10-2) using a bootstrap technique (Shelemyahu and Kenett 1998).  
 


Subdomain 
Number of Test 


Points  
Subdomain Probability of 


Failure 


1 78 0.007694523 


2 1068 0.001155012 


3 382 0.002402615 


4 3472 8.86668E-05 


Table 5. Subdomain Probabilities of Failure. 
 


1.4 Discussion and Conclusions 
The previous section describes how the test profile analysis framework addresses the 
research questions stated in Section 1.2.3. A more detailed experimentation is described in 
Chapter 8.  
 
For the previous example, the reliability estimates for some subdomain are high because 
there are a significant number of test points in two subdomains. For those subdomains that 
have a small number of test points, the reliability estimation is lower.  
 
Compared with other reliability models, our model provides a pessimistic approach. This is 
due to the consideration of the probability of failure of each component execution node as an 
internal “abstract component” where the occurrences within each execution trace are 
considered as one test over such execution node. This situation occurs because any execution 
node with a low frequency has a low reliability estimation which impacts the overall 
reliability estimation. Chapter 7 and Chapter 8 provide a detailed discussion about this 
subject. 
 
Two case studies have been assessed using this framework. All tasks within each phase were 
performed and the corresponding artifacts were produced. One case is based on an assembly 
representing a security monitoring system and the second case is based on a small embedded 
system. The outcomes of these experiments are presented in Chapter 8.  
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The main contributions derived from answering the research questions are: 
• A novel approach for the reliability assessment of component-based software assemblies 


based on partial information about the component testing process before the actual 
integration of the system. 


• The conception and definition of a new artifact, named as Test Profile. This artifact 
organizes and consolidates the information obtained from the software testing process. 
This artifact extends the “traditional” testing information by considering more execution-
oriented evidences.  


• A reliability prediction model for software assemblies is proposed. This model is based 
on test profile information and it is weighted with operation information about the 
assembly. This model provides point and interval estimates.  


• A UML profile (OMG 2007) is proposed to model and specify operational information. 
• A formal model of execution composition is proposed. This model is formally defined 


and it is used to compose execution-related information such as execution traces. 
• An execution trace prediction methodology is proposed. This methodology is based on 


selecting the best prediction model for every component based on the information 
collected in its test profile.  


• A prediction technique developed for domains mostly characterized by categorical 
attributes. This technique is based on finding the Best Binary Matching element for the 
prediction. 


• A Test Profile composition model is proposed. This model is suitable for composing 
information from component test profiles and generating assembly test profiles.  


• An analysis environment, named as TP-Toolset, which performs semi-automatically the 
assembly reliability assessment.  


 
Future research will address three areas: framework applicability, framework accuracy, and 
framework extensions. The framework applicability area includes research on topics such as 
tools leading to the automatic assessment with emphasis on scalability. The framework 
accuracy area includes topics about the accuracy of prediction and reliability models. In 
particular, the models will be extended to consider the execution node ordering, execution 
node failure dependency, and failing test cases. The framework extension area includes the 
exploration of other architectural styles and the assessment of other attributes, such as 
performance, based on the same approach.  
 
Our results show that the framework produces a meaningful early assembly reliability 
assessment. This quantitative information could be used to support assembly design 
decisions, component selection, or cost/benefit analysis of project-related issues. Major 
advantages of this framework include the use of the expected usages of the assembly in the 
reliability assessment, the use of internal component execution information to improve the 
component characterization for the reliability assessment, the practical assumption about the 
availability of limited information, the estimations having a confidence interval, and the 
possibility to automate most of the framework tasks. 
 
This framework is unique in a sense that it addresses the problem of early reliability 
estimation by combining testing information, execution traces, and operational information. 
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The framework provides the foundation to define methodologies for assessing other sorts of 
assemblies using other architectural approaches and assessing other attributes that can be 
analyzed using information from the component test profiles. 
 


1.5 Dissertation structure 
The dissertation is organized in eight chapters. Chapter 2 presents an overview of the state of 
the art work related with the problem addressed in this dissertation. Chapter 3 provides a 
general overview of the framework focusing on describing the rationale and a detailed 
description of the framework and its core elements. Chapters 4 to 7 present the details for 
every phase defined in the framework. Finally, Chapter 8 validates the entire framework by 
describing the experiments performed and discussing the results of such experiments.  
 
Figure 4 shows the dissertation structure using as reference the framework diagram. Over the 
top of the framework, the chapters about the state of the art and the test profile overview are 
denoted. The remaining chapters focus on issues defined for every phase in the framework 
and they are denoted at the bottom of every phase.  
 


 
Figure 4. Dissertation Structure. 
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Chapter 2  


State of the Art 


This chapter describes the state of the art works related to the problem addressed in this 
dissertation. The organization of this chapter is as follows: First, works about system 
assessment (i.e., evaluation, prediction, or estimation) are described. Next, works related to 
reliability prediction are presented. Then works about testing with emphasis on reliability are 
described. Finally, works about operational information modeling are explained.  
 


2.1 Introduction 
This research is built on past works in several areas. The main ideas come from works about 
model evaluation, prediction techniques, software testing, software modeling, software 
architectures, and software reliability estimation.  
 
In particular, estimation is a major area where several research works have been proposed 
following distinct approaches. The diversity of such approaches include estimation of 
software size, project time estimation, project risk estimation, cost estimation, product 
performance estimation, and product quality estimation. An comprehensive overview of such 
estimation techniques and models is provided by (Stutzke 2005) and (Hughes 2002). 
 
The focus of this research is on software reliability assessment based on components and 
abstract execution models of the system. Related works along this line include not only 
works about reliability models but also other similar works developed for other kind of 
attributes as described in the next section. 
 


2.2 Architectural Component-Based Attribute Assessment  
The goal of assessing or predicting properties of software-based systems is an ongoing 
challenge that has been addressed from different perspectives such as process-oriented or 
product-oriented approaches. In non-software domains, the use of models to predict, 
evaluate, or simulate behaviors and attributes is a well-known practice. For example, the 
prediction of the resulting force for a particular structure is a mature practice in civil 
engineering (Hibbeler 2001); another example is the prediction of energy consumption for a 
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specific arrangement of components in electrical engineering (Nilsson and Riedel 2004). 
Similar techniques have been developed for some aspects in software-based systems. 
 
The spectrum of attributes or properties that are amenable to prediction is considerable and it 
depends on different concerns. A significant effort along this direction has been done by the 
Software Engineering Institute at Carnegie Mellon University (SEI).  SEI has important 
initiatives addressing the assessment of system attributes1. This set of initiatives include the 
Predictable Assembly from Certifiable Components initiative (PACC) (SEI 2007b), the 
Software Architecture initiative (SAT) (SEI 2007c), and the Performance-Critical Systems 
Initiative (PCS) (SEI 2007a). PACC explores how component technology can be extended to 
predict properties from assemblies. SAT provides effective architecture-centric practices to 
predict the impact of software architectural decisions on quality attributes such as 
survivability, security, performance, dependability, and maintainability. PCS focuses on 
practices and techniques that can be used to predict, evaluate, and manage critical 
performance attributes of software-intensive systems. 
 
The research developed by the PACC initiative includes the definition of a general purpose 
reasoning framework called the Prediction Enabled Component Technology (PECT) (Hissam 
and Ivers 2002). This work proposes a technological framework to predict properties of 
component-based systems. Figure 5 shows the most important concepts defined for PECT. 
PECT is composed of two frameworks. The first framework describes the structure and 
behavior of a component-based system (i.e., Construction Framework); the second defines 
distinct reasoning schemes (i.e., Reasoning Framework) about distinct properties. This 
approach includes the use of models to abstract the complexity of the system. Examples of 
modeling languages to describe assemblies under this approach are the composition 
languages CL (Hissam et al., 2002b) and CCL (Wallnau and Ivers 2003). These languages 
have been designed to describe component composition and they have a semantic formal 
model. 
 
The key parts of PECT are the reasoning frameworks and the abstract component technology. 
Some important reasoning frameworks have been developed for attribute reasoning such as 
latency (Stafford et al.,  2001) (Hissam et al.,  2002b) and performance (Hissam et al.,  2005) 
(Hissam et al.,  2004) (Hissam et al.,  2002a). Other reasoning frameworks have been 
developed for the verification of models using techniques such as model checking (Chaki and 
Nishant 2006) (Chaki 2006) (Ivers and Sharygina 2004). These reasoning engines prove the 
effectiveness of the PECT approach. However, there are no evidences of works about 
reliability prediction using PECT. 
 
Other important works have been developed following the spirit of the component-based 
approach. There are several works addressing the performance assessment such as (Bondarev 
et al., 2006) (Grassi et al., 2006) (Liu,Yan and Gorton 2005); (Grunske et al.,  2005) focuses 
on reliability analysis of component-based systems. However, it describes reliability 
assessment using the system structure and assuming the existence of the reliability estimates 


                                                 
1 This description uses these initiatives as reference since they provide a good structure to describe similar related works. 
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for the components. (McGregor et al., 2003) proposes an approach to determine system-level 
properties from components including an initial approach for estimating the reliability of 
systems. Particularly, the thoughts about achieving trustworthiness prediction provide a good 
reference of all efforts related with the use of components as technology to build systems 
(Voas 2003). 
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Figure 5. PECT Concepts (Hissam and Ivers 2002).  


 
 
The Software Architecture initiative (SAT) shares common goals with PACC. Specifically, 
those related with the evaluation of architectures. This area has an extensive amount of work 
about defining and using architectural evaluation methods (Clements et al.,  2002). The most 
representative methods developed under this initiative are the Scenario-Based Architecture 
Analysis Method (SAAM)  (Kazman et al.,  1996) (Kazman et al.,  1994) and the 
Architecture Tradeoff Analysis Method (ATAM) (Kazman et al.,  2004) (Nord et al.,  2003). 
SAAM's goal is to verify basic architectural assumptions and principles against the 
documents describing the desired properties of an application by using scenarios as a basis 
for the discussion. ATAM focuses on evaluating the tradeoff between competing attributes. 
ATAM also considers qualitative analysis heuristics that are derived from an attribute-based 
architecture style (ABAS) (Klein and Kazman 1999) and are meant to be coarse-grain 
versions of the kind of analysis that is performed when a precise analytic model of a quality 
attribute is built. An example of the application of such methodology is found in (Froberg et 
al., 2006) where the reliability attribute is analyzed and design decisions are selected based 
on tradeoff analysis. 
 
Some works on architectural evaluation methodologies address distinct attributes. For 
example, the modifiability attribute is analyzed by ALMA (i.e., Architecture-Level 
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Modifiability Analysis) (Lassing et al.,  2001), performance is addressed by the method 
PASA (Performance Assessment of Software Architectures) (Williams and Smith 2002),  
usability analysis is done by (Folmer et al.,  2003), potential requirements fulfillment is 
performed using SBAR (i.e., Scenario-Based Architecture Reengineering)  (Bengtsson and 
Bosch 1998), and maintainability is addressed by ALPSM (i.e., Architecture Level Prediction 
of Software Maintenance) (Bengtsson and Bosch 1999).  
 
Other works have used tools such as Quality Function Deployment (QFD) to assess quality 
attributes from any architecture (Bond et al., 2004). A survey of the most representative 
methods developed until 2002 is described by (Dobrica and Niemela 2002). 
 
The Performance-Critical Systems Initiative (PCS) includes research works on domains such 
as automotive, aerospace and medical devices. The works around this initiative focuses on 
dependability issues (Avizienis et al., 2001). The prediction works have focused on attributes 
of critical systems around dependability by using a modeling notation referred to as 
Architecture Analysis and Design Language (AADL) (Feiler et al., 2006). AADL is a 
modeling language that supports early and repeated analyses of a system's architecture with 
respect to performance-critical properties through an extendable notation, a tool framework, 
and precisely defined semantics. Examples of property analysis include scalability analysis 
(Weinstock et al., 2004) (Weinstock and Goodenough 2006), timing, scheduling, and fault 
tolerance of critical systems (Feiler et al., 2003). 
 
The assessment of component-based systems includes comprehensive frameworks such as 
PECT or evaluation methodologies such as the architecture evaluation methods. Both 
approaches state that it is feasible to perform reliability assessment of the system. However, 
there is a reduced number of works that address this issue based on execution trace 
information. Additionally, no works address the early reliability assessment using limited 
execution trace information and composing such information. The research described in this 
dissertation focuses on the early reliability assessment using execution trace information in a 
component-based system. 
 
The following section presents an overview of the most significant works on software 
reliability assessment and the works based on architectures assessing the reliability of a 
software-based system. 
 


2.3 Software Reliability Assessment 
The reliability assessment of software is an activity that started 30 years ago. A general 
overview of works in this field is described extensively in (Lyu 1996) where prominent 
researchers describe the advances in the software reliability engineering field. Additionally, 
(Farr 1983) provides a survey of the models developed at that time. (Singpurwalla and 
Wilson 1999) provide a good analysis of the most important reliability growth models and a 
generic Bayesian approach to integrate such models.  
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The initial works on software reliability were based on the experiences and knowledge 
gained from the use of techniques for hardware reliability. However, models have evolved 
and changed over time based on experiences and computer technological advances. The most 
important works about software reliability were developed during the 70’s and 80’s when a 
considerable number of works addressing the reliability estimation of software based systems 
were published. A basic classification of such works is provided by (Komi-Sirvio et al., 
2003). In this work all software reliability models are classified into four major groups 
including reliability growth models, input domain models (or data domain models), early 
prediction models, and architectural-structural models.  
 


2.3.1 Software Reliability Growth Models 


These models derive reliability predictions from failure data and failure trends. They capture 
failure behavior during testing and extrapolate it to behavior during operation. The most 
basic classification of such models divides the models in two groups: models that use the 
time between successive failures (i.e., Type I models) and models that use the number of 
failures up to a given time (i.e., Type II models). The most representative works for Type I 
models include the Jelinski-Moranda Model (Jelinski and Moranda 1972). 
 
The Jelinski-Moranda model is the earliest reliability model. The elapsed time is taken to 
follow an exponential distribution with a parameter that is proportional to the number of 
remaining faults2 in the software.  This model assumes a perfect fault correction process (i.e., 
a correction does not introduce new faults). The failure distribution function defined for this 
model is based on the exponential distribution 


 
with 


 
Here N is the initial number of faults, and φ is the contribution of each fault to the overall 
failure rate. This model assumes that fault detection and correction begin when a system 
contains N faults, and all fixes do not introduce new faults. Additionally, the model assumes 
that all faults have the same rate. 
 
Subsequent models, such as the work proposed by (Littlewood and Verral 1973), attempt to 
present a more realistic finite fault model by treating the hazard rates as independent random 
variables. These rates are assumed to have a gamma distribution with parameters (α, β). This 
model represents the reliability impact improvement produced by additional testing. 
Similarly, (Schick and Wolverton 1978) extended the basic Jelinski-Moranda model by 
considering the contribution of every fault to the failure rate. This model assumes that the 
conditional rate is proportional to both the number of remaining faults and the elapsed time 
since the last failure. From another perspective, (Schneidewind 1975) proposes a model that 
is tailored for scenarios depending on the importance of the available information. (Langberg 


                                                 
2 A fault is a defect in the code that can be the cause of one or more failures. 
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and Singpurwalla 1985) proposes a model which provides an alternative non-bug counting 
perspective of the software failure process that is represented by considering not only the 
faulty inputs but also the correct inputs during the testing process.  
 
The Musa model (Musa 1971) has had the widest distribution among the software reliability 
models. One particular characteristic is the use of execution time rather than calendar time. 
The cumulative number of failures follows a Poisson process. (Everett 1992) proposes an 
extended execution time model that considers non-uniform execution of instructions. 
 
The Goel-Okumoto model (Goel and Okumoto 1979) takes the number of faults per unit of 
time as an independent Poisson random variable. Since each fault has no memory, this model 
is modeled by what is called a non-homogeneous Poisson process (NHPP). The Goel-
Okumoto is the NHPP variant of the Jelinski-Moranda.  
 
The Ohba model (or hyperexponential model) (Ohba 1984) is an extension of the classical 
exponential models by considering that different sections of the software experience an 
exponential failure rate. The rates vary over these sections according to their different 
natures. 
 
Other works have used distinct distributions addressing the failure modeling problem. 
Examples of such works include the models based on Weibull and Gamma Distribution, 
Logarithmic Poisson, among others.   
 
The Bayesian approach has been proposed in models such as the Littlewood-Verral model 
(Littlewood and Verral 1973). This model considers two important issues: the fault 
correction and the fault generation for the reliability estimation. In this model it is possible to 
have a less reliable system after some problem correction. The prior distribution of this 
model is assumed to be a gamma distribution. 
 
The models discussed in this section correspond to the classical reliability models that are 
usually discussed. However, there is a considerable number of works extending, improving, 
applying, and criticizing the classical reliability models. Our interest focuses on reliability 
models that can be defined using evidences about the absence of failures rather than the 
failure times or other similar measurement units.  
 


2.3.2 Input Domain Models 


Input Domain Models estimate the system reliability based strictly on the number of 
successful runs observed and compared to the total number of runs made. This category also 
includes those models that consider test inputs chosen according to probability distributions 
of anticipated operational usage (i.e., by using operational profiles). 
 
The basic model of such works is based on considering a binomial experiment, where the 
estimator for the reliability of the system is defined as (Farr 1983): 
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Here S represents the number of successful test cases in N executed test cases.  
 
(Corcoran et al., 1964) proposes a model that that is a generalization of the previous binomial 
model. This model assumes that there is a known classification of errors and their 
corresponding probability of being observed. The model is defined as the basic binomial 
model with an additional term that weights the probability of an error type with the number 
of errors of such type. 
 
(Hecht 1977) proposes an extension to this model including the average number of machine 
instructions found in every test case. This model addressed in some extent the issue of the 
system source code size. 
 
(Brown and Lipow 1975) proposes a model that modifies the basic estimator by including the 
notion of homogeneous faulty regions. These regions represent a set of inputs that generate 
the same faults. Then, the estimation is weighted by using operational information.  
 
Other models combine not only the results of a given set of test cases, but they also consider 
the input space, such as the model proposed by (Nelson 1978). This model considers the 
sampling probabilities associated with every point (i.e., operational information).   (Thayer et 
al., 1976) extends the Nelson model by partitioning the input space into disjoint regions and 
associating a probability with every region. The difference between the Nelson and the 
Brown regions relies on the criterion used for defining such regions. Nelson partitioning is 
based on building logic paths and Brown partitioning is based on defining regions that are 
homogeneous with respect to error generation. 
 
(Sugiura et al., 1974) proposes a theoretical model to determine the remaining faults in the 
system based on using the binomial model. (Elliot et al., 1978) proposes a testing procedure 
to determine whether a system has reached a given reliability based on the basic model 
described at the beginning of this section (i.e., binomial model).  
 
(LaPadula 1975)  (Sukert 1976) derived a regression model based on the success/failure 
counts observed at various stages during software testing. 
  
In a relatively recent work, (Tian 1995) proposes a model that combines the approaches from 
input domain and reliability growth models. This model uses a technique called Tree-Based 
Modeling (Clark and Pregibon 1991). This technique attempts to establish predictive 
relations through recursive partitioning. This model uses different stages to estimate the 
reliability by using an input domain approach. 
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2.3.3 Early Prediction Models 


The models discussed above focus on information that is provided in later phases of the 
development process. This section describes models that use the characteristics of the 
software as well as the characteristics of the software development process. The development 
process characteristics are used to extrapolate the software operational behavior.  
 
Examples of models in this class include the model proposed by (Gaffney and Pietrolewicz 
1990) (Gaffney and Davis 1988). This model uses information collected during the reviews 
performed in the requirements, design, and implementation development phases. This 
information includes the fault statistics that are used to predict the reliability of the system. 
 
(Smidts et al., 1996) proposes a reliability model based on a systematic identification of 
software process failure modes and their likelihoods. This model uses a Bayesian approach 
where the prior knowledge is provided by failure process identification. 
 
Other works are those developed by the Rome Laboratory (Rome-Laboratory 1992). These 
works include models to predict fault density that are transformed into reliability measures 
such as failure rates. Most recent works use the measurement framework proposed by the 
Personal Software Process (Humphrey 1994) as source of information for the reliability 
assessment of software systems (Davila-Nicanor and Mejia-Alvarez 2004). 
  


2.3.4 Architectural-Structural Models 


Architectural-structural models derive reliability estimates by combining estimates from 
different modules (components) of the software. Their emphasis is on the 
architecture/structure of the software. A classification of such models is based on the work of 
(Goseva-Popstojanova and Trivedi 2003) that classifies the models into three groups: state-
based models, path-based models, and additive models.  
 
 
State-based Models  
State-based models use graphs to represent the structure of the system (i.e., the architecture 
of the system). Graphs represent the structure, decision points, and branches in a program 
source code.  These models usually use different models of Markov Chains, such as Discrete 
Time Markov Chain, Continuous Tie Markov Chain, or Semi Markov Processes. Based on 
such models, the reliability assessment is performed by following a composite or hierarchical 
approach (Gokhale and Trivedi 1997). The composite approach combines the structural 
description (i.e., architecture) with the reliability-related information into a composite model 
which is then analyzed to predict the reliability of the system. The hierarchical approach first 
analyzes the composite behavior of the architecture and then superimposes the reliability-
related information to perform the reliability assessment. One important assumption in the 
Markov approach is the independence of failure between modules or components. 
 
The Littlewood model is the earliest model following the architectural approach (Littlewood 
1975). This model assumes that software can be characterized by an irreducible Continuous 
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Time Markov Chain. This model considers also interface failures (i.e., intra-component 
communication). Failures occur according to a Poisson process in each component. Laprie 
model (Laprie and Kanoun 1996) is the particular case when only component failures are 
considered. A generalization of the Littlewood model is proposed in (Littlewood 1985). This 
generalization assumes that the architecture of the system can be described by an irreducible 
Semi-Markov Process. Then, the composite model focuses on the total number of failures in 
a given time interval. 
 
Other works use the Markov Chain to model the architecture of the system (Hui-Qun et al., 
2001) for software applications. (Zhu and Gao 2003) proposes a work that uses the input 
domain partition of a system to derive the usage transitions required for the Markov Chain. 
(Rodrigues et al., 2005) used a formal model based on a probabilistic transition system that 
was derived for specifications of concurrent systems.   
 
The Cheung Model (Cheung 1980) is one of the earliest models following a composite 
approach. This model addressed the prediction of a system by defining an absorbing Markov 
Chain representing the control transfer among modules3.  The reliability is estimated by 
computing the probability of reaching an absorbing state representing the correct system 
termination. Some projects have used this model to assess the reliability of heterogeneous 
architectures (i.e., distinct architectural styles) such as the work proposed by (Wang et al., 
1999). This work reduces the combination of architectures to a Markov chain model. In the 
same direction, (Reussner et al., 2003) provides an extension of the model proposed by 
Cheung by using an architectural description language named as RADL. This work combines 
the use of an extended automaton to describe interface protocols that are combined to derive 
the composite model. 
 
The model proposed by Kubat (Kubat 1989) uses information about the execution time of 
each module in the system following the hierarchical approach. This model incorporates the 
notion of task which is associated with every module. Each task may require several modules 
and the same module can be used for a different task. Using this information, the reliability 
of a module is estimated as the probability that no failure occurs during the execution of a 
particular task while in a particular module. Finally, the reliability of the system is computed 
by estimating the reliability of all modules (in a series configuration) using the expected 
number of times that a particular component is executed. 
 
The model proposed by (Gokhale et al., 1998) follows the same hierarchical approach 
described by Kubat. This model computes the reliability of modules by considering the time-
dependent failure rates and the utilization of the modules through the cumulative expected 
time spent in the module execution. A detailed sensibility analysis of the reliability prediction 
of this model is presented in (Gokhale and Trivedi 2002).  
 


                                                 
3 The term “module” is used interchangeably with the term “component”. 
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(Roshandel and Medvidovic 2004) proposes an approach for estimating the reliability of 
components by using Hidden Markov Models to deal with the unavailability of information 
during early stages of the development process. 
 
Some works about various related issues, such as the uncertainty in the reliability estimates 
in software architecture have been proposed. (Goseva-Popstojanova and Kamavaram 2003) 
described a study about the sensitivity of some parameters in architectural models by using 
Monte Carlo simulation and the method of moments. Additionally, Goseva-Popstojanova has 
performed reliability assessment on large case studies using Open Source Software (Goseva-
Popstojanova et al., 2005).  
 
 
Path-based Models  
Similar to state-based models, path-based models use the software architecture explicitly and 
assume that the modules (or components) fail independently. This kind of model considers a 
sequence of components executed along each path and computes the path reliability by 
multiplying their reliabilities.  
 
The Shooman model (Shooman 1976) is one of the earliest models defining the path-based 
approach. This model assumes that software execution can take different paths. This model 
assumes that the frequency of paths and the failure probability of every path on each run are 
known. Then, the model estimates the number of failures expected in N test runs and the 
probability of failure of the system is estimated as the weighted sum of all the path 
frequencies and the failure probabilities.  
 
The model proposed by (Krishnamurthy and Mathur 1997) follows an experimental 
approach. The information includes the monitoring of component traces (i.e., sequences of 
components) observed during testing or simulation.   
 
(Yacoub et al., 2004) proposes an algorithmic approach to estimate path reliabilities. This 
model is based on using execution scenarios represented as UML sequence diagrams (Alhir 
1998). This kind of diagrams denotes the partial ordering of messages exchanged between 
entities (i.e., components). Based on this set of diagrams, the model builds a probabilistic 
model called the component dependency graph. This graph is analyzed using an algorithm 
that traverses such graphs representing execution paths. This algorithm estimates the 
reliability of the application as a function of the reliabilities of its component and interfaces. 
 
Similar to (Yacoub et al., 2004), (Singh et al.,  2001) and (Cortellessa et al.,  2002) propose a 
model that uses information from UML diagrams. The reliability approach proposed in this 
model follows a Bayesian strategy. The prior distribution associated with the component 
probability of failure is a Beta distribution. The overall system estimation is performed using 
numerical methods. 
 
(Dolbec and Shepard 1995) proposes an extension for the Shooman model by including the 
component usage ratio. Using this approach the notion of component is introduced into the 
Shooman model.  
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(Xiaoguang and Yongjin 2003) proposes a methodological approach for estimating the 
reliability following a path-based approach where a component transition diagram is derived 
and random traces are generated. Using this information, the reliability estimation is 
performed. 
 
(Mason 2002) (Mason 2002) (Hamlet et al., 2001) (Hamlet et al., 2004) propose a component 
reliability model based on considering the input and output domains in every component. The 
overall system reliability is performed by profile mappings between components. 
 
 
Additive Models 
This class of models does not explicitly consider the architecture of the software. These 
models focus on estimating the overall system reliability using the component’s failure data.  
 
The Xie and Wohlin model (Xie and Wohlin 1995) assume that component reliabilities can 
be modeled by a non-homogeneous Poisson process (NHPP). Then, the system reliability is 
also a NHPP. The system failure intensity is the sum of all component failure intensities.  
 
Everett uses the extended execution time reliability growth model at the software component 
level (Everett 1992) (Everett 1999). The overall system reliability estimation is performed by 
superimposing the component reliabilities. 
 
 
Other Related Works  
This classification includes other works that do not fit into the previous classifications but are 
related to the reliability assessment of software components. (Popic et al., 2005) analyses the 
error propagation in the Bayesian reliability model proposed by (Singh et al., 2001) with 
preliminary experimental results.  
 
(Smidts and Sova 1999) and (Smidts et al., 1997) propose a model that uses the evaluation of 
failure mode probabilities combined with a Bayesian quantification framework. Failure mode 
probabilities of functions and attributes are propagated to the system level using fault trees. 
This model accounts explicitly for the type of software development life cycle.  
 
(Shukla et al., 2004b) proposes a conceptual framework to assess the reliability of software 
components. This framework is based on combining ideas from statistical testing and test 
oracles.  
 
Several software reliability models have been proposed during the last decades. The 
assumptions and rationale of each model are mostly based on the information required for 
reliability assessment. Combinations of reliability model approaches are not frequently found 
in the literature. The most popular case is the use of architectural-structural reliability models 
with component reliability estimations derived from software reliability growth models. The 
research described in this dissertation focuses on combining the architectural-structural 
approach with the input domain approach to assess the reliability of software assemblies.  
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2.4  Software Testing Related Aspects 
A common source of information for reliability assessment is the testing process. May et al 
(May 2002) provide a good argumentation supporting the component statistical-based testing 
of critical systems. Specifically, benefits of using formal methods, statistical models, and the 
component-approach are discussed.   
 
Statistical testing has been developed around the practical limitation of testing. This area has 
become popular because of the advances in model-based development. Early works on 
statistical testing focused on the problem of selecting finite test sets and automating this 
selection (Thevenod-Fosse and Waeselynck 1991). However, more recent works have 
proposed the use of specifications to guide the selection of best finite test sets based on 
coverage criteria (Denise et al.,  2004) (Dulz and Zhen 2004) (Le Guen et al.,  2004). Other 
works propose the use of specific statistical models, such as Markov chains, to guide the test 
generation process (Whittaker and Thomason 1994).  
 
Other issues addressed in statistical testing are the stopping criteria for statistical testing. The 
decision to stop testing can be based on different criteria, such as the confidence in a 
reliability estimate, the degree to which testing experience has converged to the expected use 
of the software, and model coverage criteria based on a degree of state, arc, or path coverage 
during crafted and random testing (Sayre and Poore 2000).  
 
One testing issue related with reliability models that has been discussed is the sampling 
approach for testing. Two approaches have been proposed: random testing and partition 
testing. Advocates of partition testing emphasizes its benefits based on using probabilistic 
metrics (Chen and Yu 2000) (Chen et al., 2006) (Chen and Yu 1996) (Cai et al., 2005) (Cai et 
al.,  2004). Advocates on random testing emphasize its benefits by using simulation (Sayre 
and Poore 2000) (Hamlet 1994) (Hamlet and Taylor 1990). A good comparison between the 
two approaches is provided by (Duran and Ntafos 1984) (Ntafos 2001). 
 
The research described in this dissertation uses information from the testing process. 
However, the issues of sampling approaches and the stopping criteria are out of the scope of 
this work.  
 


2.5 Operational Information Modeling  
Operational information plays an important role in Software Reliability Engineering (Musa 
2004a) and in some reliability models. Reliability assessments are weighted using such 
information. The use of this kind of information has been recognized as an important asset in 
some software engineering practices (Musa 1993). However, the complexity in gathering 
such kind of information is recognized as an important issue by (Voas 2000). 
 
An operational profile is related with the actual operation of the system. This relation is 
usually associated with other software development artifacts such as the software 
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requirements specification. There are some works connecting the system specification and 
the operational information. (Runeson and Regnell 1998) proposes an integrated model 
representing use cases and operational information.   
 
Other works focus on proposing a structure for operational information. (Gittens et al.,  2004) 
proposes an extended operational profile addressing not only system operations but also 
process, structure, and data. Process corresponds to the usual operations defined in the basic 
operational profile; structure corresponds to the set of configurations (i.e., environment, 
hardware, software) defined for the operational profile; and data corresponds to actual values 
used in the operations defined in the operational profile. (Woit 1993) proposes an extended 
operational profile that introduced the notion of event. This kind of extension is suitable for 
systems that can be modeled using statecharts or similar models.   
 
Experiences on implementing and manipulating operational information are described by 
(Bousquet et al., 1998). In this work, the authors described how to incorporate operational 
information into a formal testing tool.  (Bishop 2002) described a study about rescaling 
reliability bounds by studying the change in operational information and discussing the 
results from a sensibility analysis.   
 
(Shukla et al., 2004a) proposes a method for addressing the issue about how to derive 
operational profiles for software components. This method uses both actual usage data and 
intended usage assumptions to derive a structure (named as usage structure), usage 
distribution, and other parameters. Using this structure the operational distribution is 
produced.  
 
In spite of the operational information importance, standard notations to describe such 
information are not proposed. The research described in this dissertation uses operational 
information to weight the reliability estimation and produce more meaningful estimations. 
Additionally, this research focuses on lack of a standard notation to specify operational 
information.  
 


2.6 Summary 
This chapter presented a summary of the state of the art in areas related to the research 
question addressed in this dissertation. This chapter emphasized related work in these areas: 


• Works on attribute assessment based on software architectures or component-based 
approaches. 


• Works on software reliability assessment. This review included also those works 
using the structure of the system. 


• Works on testing issues that are relevant for reliability assessment. These works 
included issues in random/partition testing and statistical software testing. 


• Works on operational information modeling. 
 
The next chapter presents a description about the reliability assessment framework proposed 
in this dissertation.  
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Chapter 3  


The Test Profile Analysis Framework 


This chapter describes the framework proposed to assess the reliability of software 
assemblies. The items described in this chapter include the rationale supporting the 
framework; the framework architecture, including phases, tasks, and artifacts; the models 
required as foundations for artifacts and tasks; and a basic illustrative example used in the 
subsequent chapters.  
 


3.1 Framework Rationale 
This section describes the rationale supporting the framework proposed in this dissertation. 
The rationale is organized according the strategy suggested by (Hairston et al., 1999). First, a 
major claim is presented. Then, the major claim is decomposed into five basic claims. 
Finally, each basic claim is sustained with evidences that are described in the following 
chapters.  
Figure 6 shows a diagram that depicts the organization of claims that support the rationale 
behind the proposed framework where the box at the top denotes the thesis statement (i.e., 
major claim). The major assumptions defined for this work are listed at the bottom of the 
figure. The major claim is supported using evidence provided by the supporting claims that 
are located below the major claim. This set of supporting claims is arranged as a tree where 
the arrows denote how a set of claims support a more complex claim. For example, 
supporting claim number 6 is supported by the claim numbers 1 and 2. Additionally, the 
diagram includes the chapter containing the evidences supporting the corresponding claim.. 
 
The major claim is supported based on the evidences of six claims. Every claim is described 
as a set of problems: first, the problem of characterizing the reliability-related information of 
software components using only limited testing information (i.e. claim number 7); second, 
the problem of defining a composition model and a execution trace prediction model based 
on such characterization (i.e., claim number 6); third, the problem of  modeling the expected 
assembly use (i.e., claim number 5); and fourth, the problem of defining a reliability model 
based on the information provided by the composite model as well as the operational 
information defined for the assembly (i.e., major claim). 
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Figure 6.Thesis Claim Structure. 


 
The problem of characterizing the reliability-related information of software components is 
addressed by defining a new artifact, namely Component Test Profile or just Test Profile 
(i.e., supporting claim number 6). This artifact organizes the information produced during the 
component testing process. It includes information such as inputs, expected outputs, and 
execution-related information for every performed test case. 
 
The execution-related information is produced by instrumenting the component’s source 
code and by monitoring the component during the test case execution (i.e., supporting claim 
number 1). The instrumentation is a process that inserts specific instructions in the source 
code for monitoring purposes. The inserted instructions send run-time information to a 
special purpose monitoring system that runs concurrently and independently of the tested 
component.  
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The monitored information is characterized by blocks of source code, referred to as execution 
nodes. Execution nodes are defined by considering the distinct execution paths that the 
execution of the component may follow. The output of this analysis can be visualized as a 
graph containing nodes and arrows denoting the distinct nodes that can be visited during the 
component execution. The resulting monitored information is a sequence of visited execution 
nodes. This sequence is called the execution trace. 
 
The incorporation of this execution-related information into every test case improves the 
component characterization for reliability purposes (i.e., supporting claim number 2). This 
internal information provides a detailed view about what is “used” during the component 
execution without getting into detailed instruction level information. This approach can be 
considered as a gray-box approach since it not only considers external information but also 
considers the internal run-time behavior of the component. 
 
The next issue focuses on the composition problem derived from the sequential assembly of 
components (i.e., supporting claim 4). The composition focuses on producing a model 
representing a composite behavior of such assembly using the same characterization defined 
for component test profiles. In other words, the composition output is another component test 
profile representing the composite behavior (i.e., assembly test profile).  The composition 
combines execution traces since they provides the evidences used to assess the reliability of 
the component at the lowest level. In addition, the composition also considers the 
corresponding inputs that generate such execution traces since the specific sequence of 
execution nodes is determined by the corresponding inputs to the component.  
 
For example, the composition of two components connected sequentially is described as 
follows. A test case output from the first component in the assembly is selected. Then, the 
model looks for the most similar test case input in the second component. “Most similar” 
means that such output and input can be considered the same value.  
 
The determination of which test case or test point to use in the second component is trivial if 
a comprehensive set of test cases is provided. However, since the test profile only contains a 
limited set of test cases, a new sub-problem is addressed: the problem of predicting execution 
traces based on the information recorded in the component test profile (i.e., supporting claim 
3). The problem of predicting execution traces is solved by choosing the best prediction 
model among distinct techniques, such as artificial neural networks, classification trees, or 
the best binary matching technique.  
 
Then, the composition model for sequential assemblies of software components concatenates 
execution traces defined by the corresponding inputs from the first component and the 
predicted execution traces from the second component (i.e., supporting claim 7).  
 
The composition for other architectural styles, different from sequential or data-flow styles, 
follows the same approach but it requires additional instrumentation and infrastructure that is 
discussed in Chapter 6. 
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The problem of specifying the expected assembly usage (i.e., supporting claim 5) is 
addressed by defining a notation using the Unified Modeling Language (UML). The notation 
is defined as a UML profile which includes a set of modeling constructs, definitions, and 
examples.  This notation includes concepts such as operational modes, operations, 
functionalities, and data dependencies.  
 
The reliability model combines the resulting composite model and operational information 
addressing the major claim. The proposed reliability model assumes that there is no 
knowledge about the failure distribution and every time that an execution node is visited, it 
can be considered as a different possible scenario. Thus, an execution node probability of 
failure is estimated using an estimator proposed by (Miller et al., 1992).  A specific test case 
is defined by a sequence of execution nodes and the failure of one node impacts the entire 
result of the test case. The test case probability of failure is estimated by considering a 
sequential array of execution nodes. Then, the component probability of failure is calculated 
as the expected test case probability of failure. 
 
The previous description produces a point estimation that is complemented with the 
confidence interval estimation. This interval estimation is done with the Bootstrap technique 
(Shelemyahu and Kenett 1998). This technique does not assume any distribution and it can 
produce interval estimation.  The core part of this technique is based on resampling and 
finding the distribution of the point estimation. 
 
A prediction error is provided as an additional measure for the quality of the assessment. A 
large error in prediction means that more test cases are required to improve the component 
characterization. 
 
The reliability model can incorporate operational information to weight the reliability 
assessments. The operational information might divide the input domain of the assembly 
forming a partition. The divisions are named as sub-domains. Then, a reliability assessment 
for each sub-domain is performed using the information from the component test profiles. 
Subsequently, the probabilities associated with such sub-domains allow weighting the 
reliability assessment obtained for every sub-domain. As a result, more meaningful reliability 
assessments are produced since the more important sub-domains contribute more to the 
reliability assessment.  
 


3.2 Framework Overview 
The Test Profile Analysis Framework organizes systematically a set of activities and 
information to support early reliability assessment. The core elements of the framework are 
phases, tasks, artifacts, and models. Figure 7 shows a graphical representation of these 
elements using UML notation. 
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Figure 7. Framework Elements. 


 
A phase is a group of tasks that generates a set of specific artifacts (i.e., deliverables). A 
phase is composed of tasks, artifacts, and abstract artifacts.  
 
A task is a well-defined unit of work. Tasks have readiness criteria (preconditions) and 
completion criteria (postconditions). 
 
An artifact is one of many kinds of tangible products produced during the development of 
software. In our context, an artifact is a specific piece of information with a concrete data 
representation (i.e., it has a concrete format and representation). 
 
A model is an abstraction that uses mathematical language to describe the behavior, structure, 
or properties of specific entities or processes. 
 
The relationship between these elements is as follows: a phase is composed of one or more 
tasks. Every task has a set of one or more required artifacts (i.e., inputs) and a set of produced 
artifacts (i.e., outputs). An artifact is described using abstracts artifacts to facilitate the 
manipulation and understanding of such artifact. A model provides a formal foundation 
within a specific task and it impacts the semantics of the artifacts. 
 


3.3 Framework Phases 
Figure 8 shows the four phases of the Test Profile Analysis Framework. The phases relate 
sequentially to each other meaning that the deliverables from one phase are required as input 
for the next phase.  
 







 


- 35 - 


 
Figure 8. Framework Phases. 


 
 
As Figure 8 shows, the phases can be organized as a three step approach: First, all required 
information for the reliability assessment of the software assembly is collected. Second, the 
information gathered requires some processing and preparation for the reliability assessment. 
Finally, in the third step, the analysis of the processed information is performed.  
 
A more descriptive representation of the framework is shown in Figure 9. Framework phases 
are represented by columns. The tasks are enclosed within their respective phase.  The arrows 
are used to specify when an artifact is required as input or is produced as output. The dotted 
arrow denotes input artifacts and the solid arrow denotes output artifacts. Square-ended lines 
are used to denote that a model is required for a task. For example, the task Create Assembly 


Test Profile requires as input artifacts the Component Test Profiles and the Assembly 


Operational Profile. This task generates the artifact named Assembly Test Profile. The task 
requires the Abstract Execution Composition Model as well as the Execution Trace 
Prediction Model. 
 
The first phase, the Component Testing Phase, can be seen as an independent phase because 
the component supplier might produce the required artifacts.  The other phases are focused 
on the actual assembly evaluator. 
 


3.3.1 Component Testing Phase 


The Component Testing Phase is the first framework step. During this phase the component-
related information required for reliability assessment is collected, organized, and prepared 
for the next phases. 
 
The goal of the Component Testing Phase is the generation of relevant component 
information derived from the component testing process. This information includes a set of 
test cases, execution traces, and test results.  
 
The task “Create Component Test Profile” is performed in this phase. The goal of this task is 
the generation of component test profiles. This task uses three input artifacts: Component 
Source Code, Component Specification, and Test Cases. The Component Specification is a 
description of the functionalities, domains, and other relevant information describing the 
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component behavior. The Test Case artifact provides the usual information required to test 
the component (i.e., inputs and the expected outputs).  The Component Source Code is an 
artifact that contains a human-readable representation of the component behavior. This 
representation uses notations known as programming languages. 
 


 
Figure 9. Framework Expanded View. 


 
The three artifacts of the “Component Testing Phase” answer three key questions: 
 


What are the inputs and outputs of the software 
component? – What should be tested?  → Test Specification 


What has been tested? → Test Cases 


What is the execution behavior during the test case 
execution? → Execution Information 


 







 


- 37 - 


The component specification provides a point of reference which is used to generate test 
cases. Component source code provides the means to analyze the component behavior for 
instrumentation purposes. Test cases provide the means to validate the absence of failures.  
 
Create Component Test Profile task generates Component Test Profiles. These artifacts 
consolidate the information collected after executing all test cases. This information includes 
the set of test cases and test results, the component specification, and the corresponding 
execution traces.  
 
Chapter 4 describes in detail this phase including related tasks and artifacts. 
 


3.3.2 Operational Definition Phase 


The Operational Definition Phase is the second framework phase. During this phase, the 
information about the expected use of the component is defined in terms of the specified 
assembly requirements. 
 
The goal of the Operational Definition Phase is the generation of a quantitative 
characterization about the expected usage of the assembly. The operational information 
generally relates assembly requirements or functionalities with a quantification about the 
expected use of such functionalities. This quantification is usually defined in terms of 
probabilities.  
 
The task “Create Assembly Operational Profile” is performed during this phase. The goal of 
this task is to generate a specification (i.e., a model) about the operational information.  The 
activities involved during this task include the determination of the major operations of the 
assembly in terms of the assembly requirements specification, the estimation of the expected 
use of such operations, and the definition of a model that integrates both pieces of 
information.  
 
In addition, this task specifies which components are required for the assembly and how 
these components are connected. During this task the component are selected according the 
functionality of the assembly. 
 
The task uses as input artifacts a set of Component Test Profiles. These artifacts describe the 
characteristics of the components that will be used to create the assembly.  
 
This task generates as output the Assembly Operational Profile artifact. This artifact is a 
combination of information about what operations the assembly will provide, measurements 
about their expected use, and the components involved in the assembly. 
 
Chapter 5 describes in detail this phase including related tasks and artifacts. 
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3.3.3 Execution Composition Phase 


The Execution Composition Phase is the third framework phase. During this phase, the 
information from the component test profiles is combined to generate a composite model, 
referred to as the Assembly Test Profile.  
 
The goal of the Execution Composition Phase is the manipulation and generation of a new 
artifact resulting from the test profile composition process. This information includes the 
execution-related information about the abstract execution defined for every component 
included in the assembly. 
 
The task “Create Assembly Test Profile” is performed during this phase. The goal of this task 
is to create a new test profile by combining individual component test profiles. This task 
requires models supporting both the composition process and the execution prediction 
process.  
 
The composition process uses a matching mechanism that composes two test cases from 
different components. The information from these two matched test cases is combined to 
generate a composite test case. Since component test profiles have a limited number of test 
cases, the framework uses prediction models associated with each component test profile. 
Using these prediction models the composition mechanism can predict the best matching test 
case.  
 
The task requires as input artifacts a set of Component Test Profiles and the Assembly 


Operational Profile. The component test profiles provide the atomic elements to be 
composed while the Assembly Operational Profile describes what and how to compose such 
atomic elements. 
 
This task generates as output the Assembly Test Profile. This artifact includes the same 
information defined for any component test profile, but it includes information about the 
prediction uncertainty (i.e., prediction error). This error is derived from the execution trace 
prediction performed during the composition. 
 
This phase requires two models. The Abstract Execution Composition Model prescribes the 
rules and principles governing the composition process. The Execution Trace Prediction 
Model provides a statistical model supporting the execution trace prediction when there is 
limited information in the component test profile.  
 


3.3.4 Reliability Assessment Phase 


The Reliability Assessment Phase is the fourth framework phase. During this phase, the 
reliability assessment of the assembly test profile is calculated. The goal of the Reliability 
Prediction Phase is the estimation of the assembly probability of failure. This estimation uses 
the artifacts produced during previous phases.  
 







 


- 39 - 


The task “Perform Reliability Assessment” is performed during this phase. The goal of this 
task is to estimate the assembly probability of failure. The task requires as input artifacts the 
Assembly Testing Profile and the Assembly Operational Profile.  This task produces the 
Reliability Assessment artifact. This artifact includes estimations such as the assembly 
probability of failure and the confidence interval of such estimation.  
 
This phase requires a Reliability Model supporting the reliability assessment. This model is 
based on all evidences provided in the assembly test profile (i.e., test cases, execution traces, 
and domains) and the information contained in the assembly operational profile (i.e., 
operations and expected usage probabilities).  
 


3.4 Models Supporting the Framework 
The framework requires specific models for some of its tasks. Having a model supporting a 
task is an advantage since the task performance can be improved as better models are 
proposed or refined. Furthermore, the framework can be tailored to assess other system 
properties by collecting different information in the component test profiles and defining new 
models that analyze such information. 
 
The models provided in the framework answer three important questions: 
 


How to compose/ combine information from the 
component test profiles? → 


Abstract Execution 
Composition Model 


How to solve the issue of the limited amount of 
information? → 


Execution Trace 
Prediction Model 


How to assess the information of a specific attribute? → Reliability Model 


 
The first question refers to the need for well-defined rules to manipulate and combine 
information from two or more component test profiles. The composition model proposed in 
Chapter 6 specifies the rules to find matching test cases and combine information such as 
execution traces, inputs, and outputs.  
 
The second question refers to the need of execution prediction models to enable the 
composition process. The prediction model produces the matching value required to 
guarantee the composition. The model can be generated using techniques such as artificial 
neural networks, classification trees, or the best binary matching technique. 
 
The third question is related to the reliability assessment. The reliability model proposed in 
Chapter 7 bases the estimation on information from the component test profiles, the assembly 
test profile, and the assumptions defined for the framework. The model assesses the 
reliability of a single component. This component might be a single component or a 
composite component obtained from the component test profile composition.  
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The three models discussed above are defined formally. The Execution Composition Model 
is defined as a simple composition algebra covering basic primitives and a composition 
operator. The Trace Execution Prediction Model is selected from three prediction models 
having a well-known formalization. The Reliability Model is an architectural – input domain 
model. This model weights its estimations with information from the Assembly Operational 
Profile. 
 


3.5 Basic Case Study  
This section presents a basic case study that is used to facilitate the understanding and to 
illustrate the concepts, models and activities of the framework, which are discussed in detail 
in the following chapters.  
 
The basic example is an assembly for performing the following computation: 


( )XY log=  
 


The assembly is composed of two components: the square root computation component and 
the logarithm computation component. The assembly of these components follows a data-
flow architectural style, as shown in Figure 10.  
 


 
Figure 10. Basic Case Study Assembly. 


 
According to the component specifications, the first component in the assembly requires as 
input an integer value ranging from 0 to 65535 and the output is a real value ranging between 
0 and 255.9980.  Similarly, the second component receives as input a real value ranging 
between 0 and 3.402823 x 1038.  
 
This basic case study will be used to illustrate the concepts and procedures described in the 
following chapters. 
 


3.6 Summary 
This chapter has described the framework proposed for the reliability assessment of software 
assemblies. The chapter includes a discussion of the rationale supporting the framework as 
well as the claims supporting every framework phase.  
 
The next chapter will address the claim about the feasibility of collecting execution traces 
from the component testing process.  
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Chapter 4  


Modeling and Organizing Testing 


Information 


 
This chapter addresses the supporting claim: “Execution trace information can be collected 


from the testing process.” To support this claim, two important issues have to be addressed: 
the categorization of information that is used and produced during the testing process and the 
artifact to organize such kind of information.  
 
The Component Testing Phase is the proposed solution to the issues mentioned above. Figure 
11 shows the location of this phase in the framework. Component Test Profiles are the output 
artifacts produced in this phase. These artifacts are the practical solution supporting the claim 
addressed in this chapter.  
 
This chapter is organized as follows: First, a detailed description of the problem is presented.  
Second, the rationale supporting the solution is explained. Third, a description of the task and 
artifacts used through the component testing phase is provided. Fourth, a set of examples to 
illustrate the proposed solution is presented. Fifth, an overview of the tools required to 
implement the solution is described. Finally, a discussion of the results, limitations, and 
future extensions is included. 
 


4.1 Problem Description 
Software testing is a technique that provides information to assess the reliability of a product. 
Reliability is an attribute that requires information about the existence or absence of failures. 
A failure is the inability of a system or component to perform its required functions within 
specified performance requirements (IEEE 1998). The evidence of failures is generated 
during the execution of test cases.  
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Figure 11. Framework Expanded View with Focus on the First Phase. 


 
The complexity of software testing comes from the testing space size (i.e., the size of the 
input domains).  The number of different inputs that are possible to test is usually enormous. 
For example, consider a simple function that has two positive integer input parameters (i.e., 
parameters ranging from 0 to 65535). The number of different possible input values is 
defined as the set of all possible combinations of two integer values (i.e., the number of all 
possible combined values is 655352). 
 
In practice, testing process has additional important issues to consider beyond the complexity 
previously mentioned. From the product perspective, two issues require special attention 
during the testing process: the generation of testing data and the determination of testing 
outcomes (Jorgensen 1995) (Hoffman 1998) (Utting et al., 2006) (i.e., the problem of 
determining when a test case is correct, incorrect, or undetermined). From a process 
perspective, the issues that require special attention during the testing process are those 
associated with the use, organization, and management of information (e.g., configuration 
management, storage management, and test execution).  
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The issues mentioned above define a complex scenario where any additional effort to gather 
more information may impact the time and resources of the testing process. Any decision to 
modify the testing process will add overhead to the project. For example, consider a testing 
process having 700 test cases to execute. If an additional inspection is included for every test 
case and the time required for an inspection is t, then, the project will require 700t additional 
time units. The tradeoff here is the cost of additional time versus the saving derived from the 
benefit of such inspections.  
 
The problem addressed in this chapter is the definition of a strategy to collect execution trace 
information during the testing process. 
 
The generation of execution trace information requires addressing issues such as selecting the 
information to be recorded in the execution trace, defining the runtime infrastructure that is 
required to monitor such information, and implementing the tools that are required to 
instrument the source code before testing the software.  
 
Storing and manipulating execution traces is another issue to consider since the size and 
number of such traces might consume a considerable amount of resources. This issue is 
related to the use of artifacts and the tools to manage such artifacts.  
 
The approach to solve the issues mentioned above is described in the next section. 
 


4.2 Solution Approach 
This section describes the solution proposed to address the problem of generating execution 
traces during the testing process. The solution includes the use of a new artifact and a 
strategy to collect execution information. 
 


4.2.1 The Test Profile Artifact 


A new artifact is proposed to solve the problem of organizing the testing information. This 
artifact identifies an information structure for storing, organizing, and managing the testing 
information as well as the required execution trace information. This new artifact is named 
Test Profile. A test profile is an artifact that stores the actual information and meta-
information about the testing process. A representation of the conceptual elements stored in a 
test profile is shown in Figure 12. 
 
Figure 12 shows a metamodel where metaclasses represent data elements stored within the 
test profile. This class diagram is created using the UML notation (Jacobson et al.,  1998). A 
class diagram contains boxes representing entities. The lines connecting these boxes 
represent relationships between the entities. The term metaclass refers to a special kind of 
entity that is capable of being instantiated into different occurrences. For example, a State 
metaclass may be instantiated into class instances such as Texas, Arizona, and so on. 
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The diagram specifies that a test profile is composed of test data (i.e., a set of test cases), test 
meta-data (i.e., descriptions about the information stored within the test profile), and test 
results (i.e., outcome of each test case and the corresponding execution information). 
 
Execution information describes the run-time behavior of the system or component during 
the test case execution. Additional run-time information can be included in the execution 
information by extending the current meta-model, as shown in Figure 12 (Jacobson et al., 
1998). 
 
 


Test Profile


Test Data


Test Meta-Data


Test Case
Execution Information


Test Results


Test Case Verdict


Performance Stamp Execution Trace


Domain Description


Data Generator


Protocol Description


Invariants


 
 


Figure 12. Test Profile Meta-Model. 
 
One additional characteristic of the test profile is that it might contain meta-information 
about test cases. This additional information includes meta-information describing invariants 
over the test cases, protocol descriptions associated with the set of test cases, descriptions 
about the input and output domains, and data generators defining a compact representation of 
the data used in the test cases. 
 
This metamodel is designed to support different testing scenarios and provide information for 
different purposes. There is no constraint on what information to use or include in test 
profiles, the information selection depends on the specific analytical needs. Since our interest 
focuses on reliability assessment, the minimum information that it is required includes the 
test cases, the results, and the execution trace information.  Examples of test profiles can be 
found in Section 4.4. 
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4.2.2 Execution Trace Infrastructure 


The execution trace monitoring uses an abstract model of the source code. This model is 
represented with a graph, referred to as an execution graph. A node in the execution graph 
represents a block of one or more source code instructions. Edges connecting nodes represent 
different execution paths derived from the conditionals and loops within the source code. 
This model is built using control-flow analysis (Nielson et al., 2006) (Allen 1970). This high-
level abstraction reduces the infrastructure complexity for collecting and analyzing execution 
traces.   
 
The procedure to produce and store execution traces has two steps: The source code 
instrumentation of the system under test and the execution monitoring performed during the 
testing process.  
 
The source code instrumentation is a process performed to add special purpose instructions 
within the actual system source code. This addition can be considered as source code 
refactoring (Fowler et al.,  1999). These instructions are designed to have a minimum impact 
on the system execution performance. The added instructions produce the list of nodes 
visited during the test case execution.  Figure 13 illustrates the instrumentation process that 
ends with the generation of a binary version of the system under test. The source code 
instrumentation may be performed manually or automatically. A discussion about the 
implementation of the instrumentation is presented in Section 4.5.1. 
 


 
Figure 13. Source Code Instrumentation. 


 
The source code instrumentation is performed by the developer before starting the testing 
process. Depending on the specific methodology or development process, the source code 
instrumentation may be performed by a different person within the development team. 
 
The execution monitoring infrastructure required to collect the traces could be included 
within the component under test or be implemented as an external system. The disadvantages 
of including this runtime infrastructure within the component are the execution overhead and 
the difficulty to differentiate the failures generated between the infrastructure and the 
component. The strategy followed in this work implements the runtime infrastructure as an 
external system. This strategy isolates, to some degree, the impact of failures of such 
infrastructure and the overhead generated within the system under test.  
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4.3 Solution Description 
This section describes how the ideas discussed in the previous section are implemented into 
the proposed framework. First, a description of the artifacts required and produced during 
this phase is provided. Next, a description of the task required for the component test profile 
construction is explained. 
  


4.3.1 Artifacts Description 


The input artifacts required in this phase are the component source code, a set of test cases, 
and the component specification. The output artifact is a set of one or more component test 
profiles. 
 
The Component Source Code artifact is a version of the component source code at test time. 
The Test Case artifact is a description of the test case. It includes a set of test inputs, 
execution conditions, and expected results. The test case is designed for a particular 
objective, such as to test a particular program path or to verify compliance with a specific 
requirement. In other words, a test case is a specific scenario where a specific functionality, 
behavior, or property is validated against a known result. 
 
The set of test cases provides part of the evidence that is used to assess the reliability of the 
component. This evidence provides the certainty that the component is failure-free in the 
inputs specified by the test cases. 
 
The Component Specification artifact describes the component functionality. The level of 
formality of this description may vary. Functionality signatures and a description of the goal 
of such source of functionality are the minimum elements required. The component 
specification provides a reference for evaluating the subdomain partitioning and the 
randomness of test cases. 
 
The Component Test Profile artifact is the primary source of information to determine the 
component reliability. This artifact is the core element in the framework since it collects most 
of the required information used for the reliability assessment. The component test profile 
includes information on what was tested, what was the test result, and what was the 
executable behavior of the component for each test case. In other words, the component test 
profile has the inputs, the outputs, and the corresponding execution trace for each test case. 
 
A template for every artifact is provided in Appendix B. 
 


4.3.2 Task: Create Component Test Profiles 


The Create Component Test Profile task is performed during the first phase. The purpose of 
this task is the generation of component test profiles.  
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The activities involved in this task are the instrumentation of the component source code, the 
testing of the given component using all the test cases, and the organization of all the 
information produced during the testing process.  
 
The instrumentation process uses static code analysis. Static code analysis is the analysis of a 
software source code that is performed without actually executing the program. In most 
cases, the analysis is performed on the source code; in other cases, it is performed on the 
object code. There are diverse analyses focusing on different aspects of the source code (e.g., 
control-flow analysis (Allen 1970), data-flow analysis (Forgacs 1996), type analysis 
(Palsberg 2001)). 
 
The sophistication of static analysis varies depending on the goal of such analyses. For 
example, analysis can be used to highlight possible coding errors or to produce an abstract 
model used to prove the absence of defects such as memory leaks or deadlocks.  
 
The instrumentation technique selected in this work uses principles from control-flow 
analysis. Our instrumentation procedure finds blocks defined by the different execution paths 
within a source code. The determination of a block is based on recognizing control-flow 
structures such as conditionals, loops, and alternatives. Section 4.5.1 provides details about 
the instrumentation process. 
 
The instrumentation requires an infrastructure for monitoring the testing process. This 
monitoring process is implemented by an external system which functions as an observer. 
The monitoring infrastructure records blocks that are visited during a particular test case 
execution. Section 4.5.2 gives details on the monitoring system. 
 


4.4 Examples 
This section describes two examples to show how the task defined in this phase is performed. 
Two components are analyzed and their corresponding test profiles are produced.   
 


4.4.1 Square Root Component Test Profile  


This example describes a simple component that computes the square root of an integer 
value. The artifacts provided for the construction of the component test profile are: 
 


• Component Specification 
• Test Cases 
• Component Source Code 


 
The component specification is shown in Table 6. The table lists the signature of the 
component functionality and the corresponding domain description. The domain description 
is defined in two parts: the theoretical specification defined for the domain and the actual 
implemented ranges.  
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Component Specification 
Component Name Square Root Component 


 
Component Functionality Functionality Signature Domain Description 
Square root computation 
function 


Sqroot(input): output 
 
input: Parameter whose square 
root will be computed 
output: Return value that 
represents the computed 
square root value 


Theoretical 


    
ℜ∈


ℵ∈


output


input
 


 
Implemented 


    
[ ]
[ ]998047.255,0


65535...0


∈


∈


output


input
 


Table 6. Square Root Component Specification. 
 


This specification may contain more detailed and formal information about the component. 
The level of formality and the amount of information specified depend on the purpose of the 
component. 
 
A partial set of test cases, for this component, is listed in Table 7. This table lists a set of 
random values defined for testing the square root component. The Input Value column 
contains the values to the square root component. The Expected Output Value column 
contains the corresponding values used to verify the correctness of the computation 
performed by the component. 
 


Test Cases 
Test Case Number Input Value Expected Output Value 


1 1 1 
2 43 6.557438 
3 49 7 
4 55 7.416198 
5 56 7.483315 
6 58 7.615773 
7 84 9.165152 
8 95 9.746795 
9 106 10.29563 
10 117 10.81665 
12 130 11.40175 
13 134 11.57584 
. 
. 
. 


. 


. 


. 


. 


. 


. 
Table 7. Partial List of Test Cases for the Square Root Component. 
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The component source code is shown in Table 8. The programming language used to 
implement the computation is Visual Basic. 
 


Component Source Code 
Public Function SQRoot(X As Integer) As Single 
     
Dim NewX As Single 
Dim CurX As Single 
Dim Tolerance As Single 
Dim Count As Integer 
 
CurX = X 
Tolerance = 0.00001 
Count = 0 
 
Do While True 
  Count = Count + 1 
  NewX = 0.5 * (CurX + X / CurX) 
  If (Abs(CurX - NewX) > Tolerance) Then 
    CurX = NewX 
  Else 
    Exit Do 
  End If 
Loop 
 
SQRoot = NewX 
     
End Function 


Table 8. Square Root Component Source Code. 
 


The previous artifacts are used to generate the component test profile. As explained earlier, 
the Create Component Test Profiles requires the instrumentation of the source code.  
 
The instrumentation performs an analysis over the source code structure. The analysis 
produces the execution graph. This graph denotes the different execution paths that a 
program may follow. Figure 14 shows the execution nodes assigned for the source code 
shown in Table 8. The figure also shows the graph representing the program control flow.  
 
Control-flow analysis uses well-known automatic techniques applied in compiler technology 
(Srikant and Shankar 2002). These techniques include advanced algorithms performing 
sophisticated tasks such as recognizing logical structures in a source code file, optimizing the 
source code, or verifying type-safe assignments.  
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Figure 14. Execution Nodes defined for the Square Root Component. 


 
The source code instrumentation adds a set of instructions to the source code as shown in 
Table 9. 


Component Source Code 
Public Function SQRoot(X As Integer) As Single 
     
Dim NewX As Single 
Dim CurX As Single 
Dim Tolerance As Single 
Dim Count As Integer 


Start_Test_Case(X)Start_Test_Case(X)Start_Test_Case(X)Start_Test_Case(X)    


CurX = X 
Tolerance = 0.00001 
Count = 0 


Visited_node(“A”)Visited_node(“A”)Visited_node(“A”)Visited_node(“A”)    


Do While True 
     Count = Count + 1 
     NewX = 0.5 * (CurX + X / CurX) 
     If (Abs(CurX - NewX) > Tolerance) Then 
         CurX = NewX 


      Visited_node(“B”)Visited_node(“B”)Visited_node(“B”)Visited_node(“B”)    


     Else 


          Visited_node(“C”)Visited_node(“C”)Visited_node(“C”)Visited_node(“C”)    


         Exit Do 
     End If 
Loop 
SQRoot = NewX 


Visited_node(“D”)Visited_node(“D”)Visited_node(“D”)Visited_node(“D”)    


End_Test_Case(X)  End_Test_Case(X)  End_Test_Case(X)  End_Test_Case(X)      


End Function 
Table 9. Square Root Component Instrumented Source Code. 
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Table 9 shows the instrumented source code. The added instructions are highlighted using 
bold format. These instructions were implemented as an external monitoring function that 
runs at the same time for every test case execution. This example was instrumented 
manually. 
 
The execution of all test cases is the next task after the source code instrumentation. The 
information gathered during the testing process is included in the corresponding Component 
Test Profile. Table 10 shows part of the resulting Component Test Profile produced after 
executing all test cases.  
 


Component Test Profile 
Component Name Square Root Component 


 
Component Functionality Functionality Signature Domain Description 
Square root computation 
function 


Sqroot(input): output 
 
input: Parameter whose square 
root will be computed 
output: Return value that 
represents the computed 
square root value 


Theoretical 


    
ℜ∈


ℵ∈


output


input
 


 
Implemented 


    
[ ]
[ ]998047.255,0


65535...0


∈


∈


output


input
 


Test Data 
Test Case 
Number 


Input 
Value 


Expected Output 
Value 


Execution Trace Test Result 


1 1 1 ABCD Correct 
2 43 6.557438 ABBBBBBBCD Correct 
3 49 7 ABBBBBBBCD Correct 
4 55 7.416198 ABBBBBBBCD Correct 
5 56 7.483315 ABBBBBBBCD Correct 
6 58 7.615773 ABBBBBBBCD Correct 
7 84 9.165152 ABBBBBBBBCD Correct 
8 95 9.746795 ABBBBBBBBCD Correct 
9 106 10.29563 ABBBBBBBBCD Correct 
10 117 10.81665 ABBBBBBBBCD Correct 
11 123 11.09054 ABBBBBBBBCD Correct 
12 130 11.40175 ABBBBBBBBCD Correct 
13 134 11.57584 ABBBBBBBBCD Correct 
14 150 12.24745 ABBBBBBBBCD Correct 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 10. Square Root Component Test Profile. 
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Table 10 shows two levels of information. One level corresponds to the meta-data 
information about the component that includes the domain description and the functionality 
description. The second level includes all test data, test results, and their corresponding 
execution trace information. 
 


4.4.2 Face Detection Component Test Profile 


This example describes a more complex component. This component is capable of extracting 
a section of an image containing information that is interpreted as a face. The artifacts 
provided for the construction of the component test profile are: 


• Component Specification 
• Test Cases 
• Component Source Code 


 
This component requires an image as input data. However, the physical or natural properties   
associated with such image can not be used easily to characterize every test case (i.e., 
physical information does not provide enough information to differentiate every image).  
 
The strategy for overcoming this problem is to define a differentiation ontology associated 
with the application domain. This technique is explained in Section 5.2.2. In this case, the set 
of attributes associated with the image are shown in Figure 15. 
 


 
Figure 15. Ontology for the Face Detection Component Input Domain.  
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Figure 15 shows a diagram describing a set of attributes to differentiate the images used in 
the test cases. The ellipse denotes the root of all attributes. The final leaves denote specific 
attributes (e.g., eyeglasses, beard, brightness, among others.) while intermediate leaves 
denote groups of attributes (e.g., cosmetic attributes, content image attributes, among others). 
Table 11 shows a description of all the attributes defined in the ontology. 
 
Attribute Description 
Format Image file format, such as JPG, BMP, GIF 
Brightness Image brightness ranging from 0 to 255 
Width Image width ranging from 1 to 1024 pixels 
Height Image height ranging from 1 to 1024 pixels 
Number of like faces Number of like-faces in the image 
Background type Background complexity characterized by three possible values: 


simple, medium, and complex 
Face position Face position alignment characterized by four possible values: left, 


right, straight, up, and down 
Eyes state Eyes state characterized by three possible values: open, semi closed, 


and closed 
Eyes direction Eyes direction characterized by four possible values: left, right, 


straight, up, and down 
Hair size Hair size characterized by none, short, normal, long, and extreme 


long  
Mouth state Mouth state characterized by three possible values: one, semi closed, 


and closed 
Moustache Moustache presence, characterized by two possible values: yes, and 


no 
Beard Beard presence, characterized by two possible values: yes and no 
Face expression Face expression characterized by four possible values: angry, happy, 


sad, and normal 
Eyeglasses Eyeglasses presence, characterized by two possible values: yes and 


no 
Hat Hat presence, characterized by two possible values: yes and no 
Gender Gender characterized by two possible values: male and female 


Table 11. Attribute Description for the Face Detection Component. 
 
 
Then, every test case is defined as an input image and its set of attributes. Table 12 shows a 
test case and its corresponding attributes. 
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Test Case 01_031  
 INPUT OUTPUT 
Preview  


 


 
 


 


Image File Name Img_0323.jpg Img_0323.pic 
Format BMP PIC 
Width 128 80 
Height 120 80 
Number of like 
faces 


1 1 


Background type Complex NA 
Face position Up Up 
Eyes state Open Open 
Eyes direction Up Up 
Hair size Normal Normal 
Mouth state Semi closed Semi closed 
Moustache No No 
Beard No No 
Face expression Happy Happy 
Eyeglasses No No 
Hat No No 
Gender Male Male 
Test Detection NA True 
Table 12. Test Case Defined for the Face Detection Component. 


 
The component specification is shown in Table 13. This specification is based on the 
previous ontology and the input-output attribute transformation. An attribute transformation 
describes how an attribute is changed after the component performs an operation.   
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Component Specification 


Component Name Face Detection Component 
 


Component 
Functionality 


Functionality Signature 


Face-like detection  Face_Detection(raw_image): face_found, detection 
 
raw_image: Image parameter that is used as source for the face 
detection 
face_found: Image that is returned and it contains the face 
detected  
detection: Return value that specifies if the detection was 
successful 


ATTRIBUTE TRANSFORMATION 
Attribute Input Domain Output Domain 
Format {BMP, JPG, GIF} {PIC} 
Width 1 < width < 35536 width-output ≤ width 
Height 1 < height < 35536 height-output ≤ height 
Number of like 
faces 


5 1 


Background type {simple, medium, complex} {simple, medium, complex} 
Face position {left, right, straight, up, 


down} 
{left, right, straight, up, down} 


Eyes state {open, semi closed,  closed} {open, semi closed,  closed} 
Eyes direction {left, right, straight, up, 


down} 
{left, right, straight, up, down} 


Hair size {none, short, normal, long, 
extreme long} 


{none, short, normal, long, 
extreme long} 


Mouth state {open, semi closed,  closed} {open, semi closed,  closed} 
Moustache {yes, no} {yes, no} 
Beard {yes, no} {yes, no} 
Face expression {angry, happy, sad, normal} {angry, happy, sad, normal} 
Eyeglasses {yes, no} {yes, no} 
Hat {yes, no} {yes, no} 
Gender {male, female} {male, female} 
Test Detection NA {success, failure} 


Table 13. Face Detection Component Specification. 
 
The Component Test Profile produced after the testing process includes all the previous 
information (i.e., test cases and component specification) as well as the collected execution 
traces and the test case outcomes. Table 14 shows a partial list of the additional information 
included in the component test profile of this component. 
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Test Case 
Number 


Test Case 
Verdict 


Execution Trace 


01_031 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D5D5D5D6D7D6D9E1E3E4 


01_032 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D5D5D5D5D5D6D7D6D7D9
D8E1E3E4 


01_033 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D5D5D6D7D6D7D9D8E1E3
E4 


01_034 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D6D7D6D9E1E3E4 


01_035 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D6D7D9E1E3E4 


01_036 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D6D7D6D9E1E3E4 


01_037 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D5D6D7D9E1E3E4 


01_038 Success A1A2A5A7C7C8C9D2D3D3D3D3D3D3D3D3D3D3D
3D3D3D3D4D5D5D5D5D5D5D5D5D6D7D6D9E1E3
E4 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 14. Partial Information of the Face Detection Component Test Profile. 


 


4.5 Tool Support and Implementation Issues 
This section discusses relevant issues about the tools that were used to perform the source 
code instrumentation. Additionally, the most important aspects of the monitoring system 
used for recording the execution information are discussed.  
 


4.5.1 Source Code Instrumentation 


The source code instrumentation may be performed manually or automatically. One of the 
goals of the instrumentation process is to minimize the impact of such activity on the testing 
process. Automatic analysis tools are a key element to reduce the overhead.  
 
Since the execution abstraction is based on execution paths, the instrumentation procedure 
can be performed by analyzing the source code. This analysis focuses on finding the different 
alternatives where the execution may branch in two or more different paths. Thus, the source 
code analyses tool looks for branching or looping statements. 
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The tool that performs the automatic source code instrumentation for Java programs are 
developed using the Eclipse JDT framework. It provides APIs to manipulate a given Java 
source code, detect errors, perform compilations, and launch programs (Foundation).  
Eclipse's JDT has its own Document Object Model (DOM) in the same spirit of the well-
known XML DOM: the Abstract Syntax Tree (AST).  
 
The source code navigation is simplified. It is similar to the XML document navigation used 
by the AST API. This simplification reduces the analysis complexity since these mechanisms 
hide the complexity of scanning and parsing the source code. 
 
Figure 16 shows the typical workflow followed when AST is used (Kuhn and Thomann 
2007). This flow starts by providing a component source code (i.e., step 1). Next, the source 
code is parsed with the class org.eclipse.jdt.core.dom.ASTParser (i.e., step 2). The product 
from this step is the abstract syntax tree of the source code (i.e., step 3). Depending on the 
specific needs, the AST may be manipulated by directly modifying the AST or by noting the 
modifications in a separate protocol. This protocol is handled by an instance of ASTRewrite 
(i.e., step 4a and 4b). Next, the modification in the source code are applied (i.e., step 5). 
Finally, it is required to use a wrapper for the source code (i.e., step 6). 


 
Figure 16. Typical Workflow using the AST (Kuhn and Thomann 2007). 


 
Using this API, the source code instrumentation for java programs is easily implemented. 
However, the instrumentation for other systems having distinct programming language was 
performed manually. 
 


4.5.2 Execution Monitoring 


The execution monitoring is performed by an external system that is running at the same time 
as the component under test. This system is called the Execution Trace Monitoring System 
(ETMS). The architecture of this monitoring system is shown in Figure 17.  
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Figure 17. Execution Trace Monitoring System. 


 
The main ETMS components are the controller, the session handler, and the trace monitor 
component. The session handler component is the interface with the system that tests the 
component. This component also manages different sessionS for different test cases. The 
trace monitor component is the listener of all visited execution nodes. This component 
collects this information during the test case execution and organizes such information. The 
controller component is the core element of the system. This component coordinates the 
other components and interacts with the persistent repository (i.e., the database). The 
bidirectional arrows in the diagram denote information and control exchange.  
 


4.6 Discussion 
This chapter has described two elements addressing the supporting claim: “Execution trace 
information can be collected from the testing process.” The first element, the Component 
Test Profile artifact, provides support for storing, organizing, and analyzing test execution 
information. The second element, the execution monitoring infrastructure provides a run time 
environment to collect execution traces.  
 
The cost of building test profiles can be reduced if most of the information produced during 
the testing process is reused. The part of the component test profile where the component 
functionality is specified can be obtained from the source code or the regular system 
documentation. If this is the case, then the additional required effort required is the 
instrumentation. 
 
The use of instrumented code is valid when it can be assumed that this additional code does 
not have side effects or does not impact the actual execution. This assumption needs to be 
analyzed on a case by case basis since there are technological platforms where the additional 
code may have a considerable impact. For example, there are embedded systems where the 
size of the source code is an important limitation in the system under development. 
Additional statements may impact this type of constraints.  
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There are cases where the operating system is able to create profiles during the execution of 
any program. These profiles have been used mostly for debugging, performance assessment 
(Ofelt and Hennessy 2000), and program maintenance (Reps et al., 1997). A future research 
direction is to extend one of such profilers to address the monitoring of execution traces. 
 
The current approach to abstract the execution is based on grouping statements based on 
control-flow criteria. There are some drawbacks in this approach that must be considered for 
future improvements. For example, the control-flow analysis does not consider the number of 
statements defined within any block; it is possible to have a considerable number of 
statements within one block and to have another block with just one statement. From a 
reliability perspective, there are more chances to find a failure in the block having more 
number of statements than in that having just one statement.  
 


4.7 Summary  
This chapter presented evidence supporting the claim: “Execution trace information can be 


collected from the testing process.”  The first phase of the Test Profile Analysis Framework 
provides the solutions of the problems derived from this claim. 
 
The solution includes the definition of a new artifact that is produced during the component 
testing process as well as the implementation of tools which partially automate the task 
defined in the Component Testing Phase. 
 
The contributions of this chapter include: 


• A definition of a new artifact, the Component Test Profile, which collects information 
from the testing process. This artifact is based on a metamodel that can be extended to 
fit other needs of information. 


• A model providing an abstract view of the component’s execution during the testing 
process. This model is based on previous works in the area of control flow analysis. 


• A solution to the problem of automatic source code instrumentation for Java 
programs. This solution is based on using libraries that provide a high level view of 
any source code program similarly to an XML document.  


• The design and implementation of a system that is capable of monitoring 
instrumented component source code during the component testing process. 


 
The next chapter will address the claim about the need for techniques to model operational 
information to facilitate the reliability assessment. 
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Chapter 5  


Modeling Operational Information 


This chapter addresses the supporting claim: “Operational information can be specified in a 


well-suited form that improves the reliability assessment.” Two major issues have to be 
addressed: a notation to specify operational information and a technique to model complex 
domains. The evidence that supports this claim is described in this chapter.  
 
The Operational Definition Phase is the proposed solution to the issues mentioned above. 
Figure 18 shows the location of this phase in the framework. The output artifact produced in 
this phase is the Assembly Operational Profile. This artifact is the practical solution 
supporting the claim addressed in this chapter.  
 


Assembly 


Operational Profile


<artifact>


Test Case


<artifact>


Reliability 


Assessment


<artifact>


Component Test 


Profile


<artifact>


Component 


Specification


<artifact>


Source Code


<artifact>


Create Assembly 


Operational Profile


Create Component


Test Profiles


Create Assembly 


Test Profile
Perform Reliability 


Assessment


Component Testing 


Phase


Operational Definition 


Phase
Execution 


Composition Phase


Reliability 


Assessment Phase


Assembly Test Profile


<artifact>


Reliability Model


<model>


Abstract Execution 


Composition Model


<model>


Execution Trace 


Prediction Model


<model>


SUPPORTING CLAIM 5: USE MODELING
Operational information can be specified in a well-
suited form that improves the reliability assessment.


 
Figure 18. Framework Expanded View with Focus on the Second Phase. 
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The content of this chapter is structured as follows: First, a detailed description of the 
problem is presented.  Second, the rationale behind the solution is explained. Third, a 
description of the task and artifacts used in this phase is presented. Fourth, a set of examples 
is presented to illustrate the solution proposed in this chapter. Fifth, a description of the 
notation to specify operational information and the technique to characterize complex 
domains are described. Finally, results, limitations and future extension of the proposed 
solution are discussed. 
 


5.1 Problem Description 
Software reliability estimations are usually weighted using information representing the 
expected use of the system. These conditions are described using an artifact called the 
operational profile. Software reliability engineering (Musa 2004b) proposes the use of 
operational information (i.e., quantitative characterization of the expected use of the system) 
to guide the testing process as well as the estimation of the software reliability.  
 
Although there is a general consensus regarding the benefits of using operational profiles, 
there is no standard form for modeling or documenting such kind of information. There is a 
consensus about the importance and relevance during the development process but the only 
agreed characteristic is the quantitative role that operational profiles should have.  
 
The lack of a standard approach for specifying operational profiles has been addressed by 
(Gittens et al., 2004) who proposed an “extended operational profile model.” The extension 
proposes to include information such as the environmental conditions associated with the 
expected use and the data constraints associated with the functionalities. This work, however, 
proposes a theoretical extension rather than providing practical experiences.  
 
Furthermore, some domains are difficult to characterize since their physical representations 
do not have enough semantic content. This lack of semantic content makes it difficult to 
differentiate elements in such domains. For example, the physical representation of an image 
does not provide enough information to differentiate images for face recognition purposes.  
This issue requires techniques to characterize such kind of domains beyond the notation used 
for specifying them.  
 
The issues mentioned before suggest the need for both, a method or technique, to 
characterize complex domains and a notation to model operational information addressing 
the usage heterogeneity found in several systems.  
 
The problem addressed in this chapter is the definition of an operational modeling solution 
(i.e. notation) and a technique to support the use of such a notation to be used in the 
framework. This notation should include a way for specifying the components in the 
assembly. It is assumed that a description of the assembly (i.e., an assembly specification) 
and the quantitative information required for the operational modeling are available. 
 
The next section describes the approach for solving the issues mentioned above. 
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5.2 Solution Approach 
The solution includes a notation to model operational information and a technique to 
characterize complex domains.  
 


5.2.1 Modeling Operational Information: UML Operational Characterization Profile 


The need for a standard notation to model operational information is addressed by creating an 
extension for the Unified Modeling Language (UML), known as UML Profiles (OMG 2002). 
The extension described in this chapter is named as UML Operational Characterization 


Profile.  
 
UML is an industry-standard language for specifying, visualizing, constructing, and 
documenting the artifacts of software systems standardized by the Object Management 
Group (OMG 2007). UML simplifies the complex process of software design by using 
“blueprints” for software construction.  
 
A UML profile is a modeling extension of UML focusing on a specific domain. This kind of 
extensions is allowed in the UML language. Examples of UML profiles are the UML Testing 
Profile (OMG 2005b), UML Profile for Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms (OMG 2006b), UML Profile for Schedulability, 
Performance and Time (OMG 2005a),  UML Profile for System on a Chip (SoC) (OMG 
2006c), among others.  
 
A UML profile is defined by a set of domain-oriented concepts (i.e., represented by 
metaclasses labeled with specific stereotypes), a set of relationships among these concepts, a 
set of rules about how these concepts may be combined to represent models, and proper 
semantics required for such models. All this information is specified by using UML and the 
Object Constraint Language (OCL) (OMG 2006a). 
 
UML is capable of modeling and specifying operational information by using basic modeling 
constructs. However, there is a need for standardized constructs and notations that can help to 
facilitate the analysis of operational information.  
 
Operational information can be characterized from different perspectives such as a data-
oriented perspective, a function-oriented perspective, or some combination of these The 
selection of a perspective depends on the specific system implementation. 
 
The UML Operational Characterization Profile is organized in three logical groups of 
concepts that are stored in three different UML packages: A package for data-related 
information, a package for functional information, and a package for generic support. The 
package organization is shown in Figure 19. This figure uses UML notation to denote the 
package organization (i.e., the lines with a diamond specify that the package connected at 
one end is part of the package on the solid-diamond side of the line. 
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Figure 19. Package structure within the UML Operational Characterization Profile.  


 
The Data-Oriented Modeling Constructs package contains modeling constructs to model 
operational information at the data level, the Function-Oriented Modeling Constructs 
package contains modeling constructs to model operational information at the function level, 
and the Generic Support package contains generic construct providing support and 
consistency to all other packages.  
 
The most important modeling constructs defined within the data-oriented package are the 
domain and the data constraint. A data constraint represents a condition that defines a subset 
over the entire domain associated with some specific data. A domain is a set of all possible 
values that any particular component may require or produce. 
 
Similarly, the most important modeling constructs defined in the function-oriented package 
are the operational mode, the operation, and the function. An operational mode is a set of 
major logical operations that are constrained by specific conditions. An operation is a major 
logical system task. A function is an atomic functionality performed by a system. The 
combination of one or more functions defines an operation. 
 
In the same way, the most important modeling constructs defined in the generic support 
package are the operational profile, the scenario, and the environmental constraint. An 
environmental constraint is a condition about the parameters defining the system 
environment (i.e., the conditions about the system execution). A scenario is a typical 
interaction between the user and the system or between two software components.  
 
The previous modeling constructs (i.e., metaclasses) are used to create models representing 
operational information. Section 5.5.1 details the UML profile and its organization. 
Appendix C includes the complete UML Profile specification.  
 


5.2.2 Modeling Complex Operational Domains 


Some domains have semantic information that is not represented in the data physical storage. 
Images are examples of such kind of domains. The physical attributes of an image are the 
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size and the value for every pixel within the image. Face recognition applications uses 
images as input parameters. It is not feasible to use physical attributes to differentiate the 
images contained in the test cases.  
 
We propose a method to address the problem of modeling complex domains by constructing 
a differentiation ontology. A differentiation ontology has a set of domain-related attributes 
that are used to differentiate elements from such domain. This method, called the Domain 
Characterization Method (DCM), is composed of seven steps arranged in an iterative cycle as 
shown in Figure 20.  
 


Task 4:


Define differentiation criteria


Task 2:


Identify domain information


Task 3:


Identify natural attributes and 


associations


Task 7:


Classify and generate the 


differentiation ontology for such 


information


Task 6:


Evaluate information using the 


differentiation criteria


Task 5:


Identify meta-attributes and 


associations


Does the differentiation 


criteria satisfy differentiation 


goals?


Task 1:


Define differentiation goals


YES


NO


 
Figure 20. Steps in the Domain Characterization Method.  


 
The DCM follows an approach based on cyclic refinements guided by the achievement of 
differentiation goals. Differentiation criteria represent a set of attributes which are used to 
classify information for differentiation purposes. A more detailed discussion of DCM is 
presented in Section 5.5.2.  
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5.3 Solution Description 
This section describes how the ideas in the previous section are implemented in the 
framework. First, a description of the artifacts is provided. Next, a description of the task 
required for the assembly operational profile construction is explained. 
 


5.3.1 Artifacts Description 


The inputs artifacts required in this phase are a set of component test profiles. The output 
artifact is the assembly operational profile. The component test profiles are the building 
elements required to define the assembly.  
 
The Assembly Operational Profile artifact contains information regarding the components 
that are required for the assembly, the functionalities provided by the assembly, and the 
quantitative characterization of the usages of such functionalities.  
 
The assembly operational profile is a key artifact in the framework because it contains the 
information to weight the reliability assessment. Domains with more expected operational 
use have more weight in the final reliability estimate. This operational-based weighting 
produces more useful estimations from a pragmatic perspective, since the reliability estimate 
depends on the expected usages of the assembly. 
  
A template for every artifact is provided in Appendix B. 
 


5.3.2 Task: Create Assembly Operational Profile 


The Create Assembly Operational Profile task is performed during the second phase of the 
framework. The purpose of this task is the generation of the operational information required 
for the reliability assessment as well as the specification of the components included in the 
assembly.  
 
The activities involved in this task are the specification of operational information using the 
UML Operational Characterization Profile and the characterization of domains. It is 
assumed that quantitative information required for the operational model is available (i.e., the 
subdomain operational probability is known). This task can not be performed automatically 
since it requires the construction of models rather than the processing of information.  
 


5.4 Examples 
This section describes three examples to illustrate the activities performed in the phase. The 
first example focuses on an assembly composed of one component. The second example is 
an assembly representing a security monitoring system. The technique to model complex 
operational domains is used in this example. The third example is an assembly representing a 
web-based library system. 
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5.4.1 Square Root Component Operational Profile 


This example presents the operational profile of a basic assembly having one component. 
This assembly requires a data-oriented characterization since there is only one functionality 
or operation defined for such assembly. Table 15 shows the assembly operational profile. 
This representation has a corresponding UML model which is shown in Figure 21.  
 


Assembly Operational Profile 
Assembly Name Square Root Assembly 
Purpose Estimate the square root of the most frequent entries in the 


system. 
Assembly 
Specification 
 
 


 


 
 


Quantitative Model 
Subdomain Description (X) Domain Description 
 Lower Upper Probability 


Comments 


Theoretical 


    
ℜ∈


ℵ∈


Y


X
 


 
Implemented 


    
[ ]
[ ]255.998047,0


65535...0


∈


∈


Y


X
 


 
Subdomain 1 
 
Subdomain 2 
 
Subdomain 3 
 
Subdomain 4 


 
0 
 
1001 
 
5001 
 
20001 
 


 
1000 
 
5000 
 
20000 
 
65535 


 
0.15 
 
0.4  
 
0.35 
 
0.1  
 


 


Table 15. A Data-oriented Assembly Operational Profile. 
 
Table 15 shows the information derived from the operational information defined in the 
operational model shown in Figure 21. The first part of the table shows descriptive items 
such as the assembly name, the assembly purpose, and the assembly specification (i.e., 
required components). The second section, named as quantitative model, contains the most 
relevant operational information such as domain description, subdomain descriptions, and 
their corresponding operational probabilities. 
 


Figure 21 shows the corresponding UML model which is based on the UML Operational 
Characterization Profile. The model includes information that is not shown in the assembly 
operational profile. For example, the model shows the hierarchical relationship between the 
modeling constructs such as the relationship between operation and operational profile, the 
relationship between domain and subdomains. The constraint defined for the measurement 
consistency model assumes that the sum of all probabilities is equal to 1. 
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Figure 21. UML Model defined for the Operational Profile shown in Table 15. 


 


5.4.2 Security Monitoring System Operational Profile 


This example describes the operational profile specified for a system that is represented by an 
assembly. The goal of this system is to monitor the user access to different secure locations.  
 
This assembly uses as input images that are complex to characterize using only their physical 
attributes. This issue is addressed using the technique to model complex operational domains. 
The resulting differentiation ontology is shown in Figure 22. The attributes defined for this 
ontology were obtained from experts in the area of face recognition and relevant 
characteristics in the operational environment of the assembly. For example, experts describe 
that image features such as eyes and mouth represent relevant attributes associated with face 
recognition algorithms. Operational environment has relevant attributes such as the use of 
eye glasses and the hair size. The final ontology combines attributes from these two sources. 
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The interpretation of symbols used in Figure 22 is the same as Figure 15 in Chapter 4. The 
ellipse denotes the root of all attributes. Final leaves denote specific attributes (e.g., 
eyeglasses, beard, and brightness) while intermediate leaves denote groups of attributes (e.g., 
cosmetic attributes and content image attributes). The difference between Figure 22 and 
Figure 15 is the number of attributes that impact the data differentiation. 
 


 
 


Figure 22. Differentiation Ontology defined for the Image Input Domain. 
 
The assembly operational profile defined for this application is shown in Table 16. This table 
shows in tabular form the operational model depicted in Figure 23. 
 


Assembly Operational Profile 
Assembly Name Security Monitoring System  
Purpose Detect if users are allowed to stay at particular locations. 
Assembly 
Specification 
 
 


 
 


 
 
When the output is True, the user is allowed to stay at the location. 
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Quantitative Model 
Domain 
Description 


Subdomain Description 


 Subdomain Name Probability 


Comments 


 
 
 


Image 


 
Corporate Location 
 
Storage Location 
 
Production Location 


 
0.254 
 
0.068 
 
0.678 


 
This subdomain corresponds 
to the corporate offices. 
This subdomain corresponds 
to the storage facility. 
This subdomain corresponds 
to the production section. 


Subdomain Characterization 


 
Corporate 
Location 


Production 
Location 


Storage  
Location 


Format JPG JPG JPG 
Width 128 128 320 
Height 120 120 240 
Num. Like-Faces 1 1 1 
Background MEDIUM MEDIUM MEDIUM 


Face Angle {LEFT, RIGHT, 
STRAIGHT, UP} 


{LEFT, RIGHT, 
STRAIGHT, UP} 


{LEFT, RIGHT, 
STRAIGHT, 
DOWN} 


Eyes State 
{OPEN, CLOSED, 
SEMICLOSED} ANY 


{OPEN, CLOSED, 
SEMICLOSED} 


Eyes Direction ANY ANY ANY 


Hair Size 
{NONE, 


NORMAL, 
SHORT, LONG} 


{NONE, 
NORMAL, 


SHORT, LONG 


{NONE, 
NORMAL, 


SHORT, LONG} 


Mouth state 
{OPEN, CLOSED, 
SEMICLOSED} 


{OPEN, CLOSED, 
SEMICLOSED} 


{OPEN, CLOSED, 
SEMICLOSED} 


Beard ANY NO ANY 
Moustache ANY NO ANY 
Face Expression ANY ANY ANY 
Eyeglasses YES ANY NO 
Gender {MALE} {FEMALE} {MALE} 


 
Table 16. An Assembly Operational Profile containing a Complex Operational Domain. 


 
 







 


- 70 - 


«Operational Profile»SEC_System_OperationalProfile


«Operation»


Detect User


1


1


«Input Domain»


Domain


1
1


-Measurement : Probability = 0.678


«SubDomain»


Production Section


-Measurement : Probability = 0.254


«SubDomain»


Storage Facility


-Measurement : Probability = 0.068


«SubDomain»


Corporate Section


1 1
1 1


«Measurement Consistency Model»Measurement Consistency Model


{Context Operational Profile inv: 


Subdomain.AllInstances() ->  


[ forAll( p |p.oclIsKindOf(Subdomain) and Subdomain.Measurement > 0 and Subdomain.Measurement < 1)] AND 


[Subdomain.AllInstances().sum() = 1]}


«Data Constraint»


DC_PS
«Data Constraint»DC_SF «Data Constraint»DC_CS


{Format = JPG


Width = 128


Height = 120


Num. Like-Faces = 1


Background = MEDIUM


Face Angle = {LEFT, RIGHT, STRAIGHT, UP}


Eyes State = {OPEN, CLOSED, SEMICLOSED}


Eyes Direction = ANY


Hair Size = {NONE, NORMAL, SHORT, LONG}


Mouth state = {OPEN, CLOSED, SEMICLOSED}


Beard = ANY


Moustache = ANY


Face Expression = ANY


Eyeglasses = YES


Gender = MALE


}


{Format = JPG


Width = 128


Height = 120


Num. Like-Faces = 1


Background = MEDIUM


Face Angle = {LEFT, RIGHT, STRAIGHT, UP}


Eyes State = ANY


Eyes Direction = ANY


Hair Size = {NONE, NORMAL, SHORT, LONG


Mouth state = {OPEN, CLOSED, SEMICLOSED}


Beard = NO


Moustache = NO


Face Expression = ANY


Eyeglasses = ANY


Gender = FEMALE


}


{Format = JPG


Width = 320


Height = 240


Num. Like-Faces = 1


Background = MEDIUM


Face Angle = {LEFT, RIGHT, STRAIGHT, DOWN}


Eyes State = {OPEN, CLOSED, SEMICLOSED}


Eyes Direction = ANY


Hair Size = {NONE, NORMAL, SHORT, LONG}


Mouth state = {OPEN, CLOSED, SEMICLOSED}


Beard = ANY


Moustache = ANY


Face Expression = ANY


Eyeglasses  = NO


Gender = MALE


}  
Figure 23. Operational Model Defined for the Security Monitoring System Assembly. 


 
The explanation of the information provided in Figure 23 and Table 16 is similar to the 
square root example. However, this example includes the use of the differentiation ontology 
to characterize every subdomain. 
 


5.5 Tool Support and Implementation Issues 
This section provides a more detailed description of the UML Operational Characterization 
Profile and a description of the technique used to characterize complex domains. 
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5.5.1 UML Operational Characterization Profile  


The use of UML profiles starts by creating a document that defines the profile. The elements 
included in a UML profile definition are an overview of the profile structure, a list of 
concepts defined for the domain, the structure of meta-classes supporting such concepts, the 
organization of metaclasses and their relationships, a description of every metaclass and its 
constraints, and a set of illustrative examples.  
 
The UML Operational Characterization Profile has a set of stereotypes for each UML 
metaclass. Additionally, this profile has been designed to define a set of new stereotyped 
modeling elements instead of defining new kinds of diagrams. This approach allows the use 
of almost all other UML modeling capabilities. This approach is achieved by defining a new 
generalization element used to extend the semantic capabilities of any classifier (defined in 
the UML Kernel package). The generalization element is referred to as 
OperationalizableElement. This metaclass allows the incorporation of measurements 
representing operational information, as shown in Figure 24.  
 


 
Figure 24. Partial Meta-Model Showing the Incorporation of Operational Attributes. 


 
The consequence of this extension is that almost any UML model may be 
“operationalizable.” This means that any UML diagram can be “semantically enriched” with 
measurements about the expected or intended use of the entity described in the diagram. The 
consistency and coherence of any UML operationalized model depends on the specific case. 
 
The UML Operational Characterization Profile is organized in two logical groups of concepts 
that are stored in three different packages: Package for data-related information (i.e., Figure 
26), package for functional information (i.e., Figure 27), and a package providing generic 
support (i.e., Figure 25). 
 
Figure 25 shows the package containing modeling constructs that are general to the other 
packages. The descriptions of concepts defined within this package are: 
 
• An Environmental Constraint is a condition about the parameters defining the system 


environment (i.e., the conditions about the system execution). 
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• The Measurement Consistency Model represents a set of rules defined over measurement 
attributes defined within a model for some modeling constructs. The consistency rules are 
defined with Formation Rules and Invariants. 


• An Operational Profile is a quantitative specification about the expected use of a system. 
The specification can be defined at different levels: operation level, data level, or a 
combination of both levels. 


• The OperationalizableElement is used to extend the modeling capabilities for the 
measurement specification. The attributes defined in this class, which are extended to all 
classifier modeling constructs, allow the specification of constraints and invariants over 
any model that uses this feature. 


• A Scenario is a typical interaction between the user and the system or between two 
software components. A scenario can be described as a set of scenarios following a 
structured organization such as a state chart. 


 


 
Figure 25. Generic Support Package. 


 
Figure 26 shows the package containing modeling constructs that are data-related. These 
construct are related to those defined within other packages. The descriptions of concepts 
defined within this package are: 
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• A Data Constraint represents a condition that defines a subset over the entire domain 
associated with specific data. 


• A Domain is a set of all possible values that any particular program might require or 
generate. 


• A Subdomain is a subset of values from any specific domain. Usually, a set of 
subdomains forms a partition over a specific domain. 


• An Input Domain is the domain containing all the input values defined for a specific 
function, operation, or program. 


• An Output Domain is the domain containing all the output values defined for a specific 
function, operation, or program. 


 


 
Figure 26. Data-oriented Modeling Constructs Package. 


 
Figure 27 shows the package containing modeling constructs that are function-related. These 
constructs are related to those defined within other packages. The descriptions of concepts 
defined within this package are: 
 
• An Operational Mode is a set of major logical operations. Usually there is a small 


number (e.g., from 2 to 8) of operational modes defined for a system. 
• An Operation is a major system logical task performed by the system. 
• An Operation Group is a set of associated operations based on predefined criteria. 
• A Function is an atomic functionality performed by a system. The combination of one or 


more functions defines an operation. 
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Figure 27. Function-oriented Modeling Constructs Package. 


 
These modeling constructs provide support to specify operational models as discussed in 
Section 5.4. More technical details about the operational profile can be found in Appendix C. 
 


5.5.2 The Domain Characterization Method  


The Domain Characterization Method (DCM) is a technique to characterize complex 
information into a suitable, observable, and differentiable form. This method is based on 
building differentiation ontology. This ontology is oriented to provide a set of attributes to 
differentiate data for a specific domain. 
 
The strategy proposed to address such limitation is by defining meta-information about the 
data (e.g., meta-information about the image). This meta-information allows the 
characterization and differentiation among images. The required additional information 
depends on the specific application domain. For example, the meta-information required for 
an image-based application for face recognition is different from the information required for 
image-based application for volumetric change detection. 
 
The strategy is based on creating an ontology associated with the application domain. The 
key part of this ontology is its orientation to differentiate data. This differentiation is helpful 
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for operational modeling, data generation, and simulation. This ontology is referred to as the 
differentiation ontology. 
 
An ontology is a specification of a conceptualization of a knowledge domain (Gomez-Perez 
et al., 2003). An ontology is a controlled vocabulary that describes objects and the relations 
between them in a formal way.  It has a grammar for using the terms in the vocabulary and to 
express something meaningful within a specified domain of interest. Ontology development 
is a popular technique associated with knowledge management. There are several 
methodologies for building ontologies. The most representative methodologies are the Cyc 
Method (Lenat and Guha 1990), the Uschold and King’s method (Uschold and Gruninger 
1996), Grüninger and Fox’s Methodology (Gruninger and Fox 1995), and Methontology 
(Fernandez-Lopez et al., 1997). The strategy proposed to address the problem in this section 
is inspired on the Methontology conceptualization activity. The result from this strategy is 
the Domain Characterization Method. DCM has seven steps with each one addressing a 
specific goal. Figure 28 shows the seven steps and their corresponding goal.  
 


Goal: 


To determine the differentiation purposes


Task 4:


Define differentiation criteria


Task 2:


Identify domain information


Task 3:


Identify natural attributes and 


associations


Task 7:


Classify and generate the 


differentiation ontology for such 


information


Task 6:


Evaluate information using the 


differentiation criteria


Task 5:


Identify meta-attributes and 


associations


Does the differentiation 


criteria satisfy differentiation 


goals?


Task 1:


Define differentiation goals


YES


NO


Goal: 


To determine the source of information as 


well as samples of data


Goal: 


To identify natural attributes in the 


information sample (i.e., physical 


attributes)


Goal: 


To define a set of attributes that 


differentiate and characterize the 


information sample 


Goal: 


To identify high-level attributes in the 


information sample (i.e., meta-attributes)


Goal: 


To evaluate if a given differentiation 


criterion satisfies the differentiation goals


Goal: 


To generate the differentiation ontology 


and to classify information sample 


according to such ontology  
 


Figure 28. Domain Characterization Method and the goals defined for every task. 
  
The first step defines the goals of the ontology. These goals guide the refinement process 
(i.e., iterations) since they provide the stopping criteria. For example, taking as example the 
face recognition system, the goal of the ontology is the differentiation of input information in 
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order to characterize three different scenarios where the system is used (i.e., operational 
information).  
 
The second step collects the information that is manipulated and stored in the system. Using 
the same example, the information collected is a set of image files. 
 
The third step analyzes the information to find the attributes associated with their physical 
representation. These attributes are referred to as natural attributes since they are naturally 
observed in such information. For example, the natural attributes for an image are the image 
width, height, size, and the values for every pixel within the image. 
 
The fourth step defines the differentiation criteria by identifying the set of attributes used to 
differentiate all information items. Depending on the set of attributes found during the 
corresponding iteration, the criteria may be composed of natural as well as meta-attributes. 
Consider the example of the image during the first iteration. In this case, the only defined 
attributes are natural, therefore the differentiation criteria is defined using these attributes.  
 
The fifth step is postponed when differentiation criteria do not satisfy the differentiation 
goals. This step creates a high-level structure of attributes. In the image example, meta-
attributes may include attributes such as the number of people in the image, background type, 
and face position. 
 
The sixth task evaluates the feasibility and the effectiveness of the differentiation criteria. 
Following the example, using any combination of natural attributes does not provide means 
to characterize scenarios, as required in the first step. 
 
The iteration process continues until a suitable differentiation criterion based on a set of 
natural and meta-attributes is defined.  Finally, the seventh step classifies the information and 
generates the additional information if those are not provided. 
 


5.6 Discussion 
This chapter has described two elements addressing the supporting claim: “Operational 


information can be specified in a well-suited form that improves the reliability assessment.” 
The first element, the notation, provides a standard notation for creating operational models 
of systems. The second element provides a technique to overcome the problem of modeling 
complex domains. 
 
The operational modeling notation helps the reliability assessment framework since it 
provides a domain-specific notation. The use of such notation, however, is not a mandatory 
requirement. This notation helps since it may be implemented in some case tools allowing 
the use of UML profiles and performing analysis over these models.   
 
The practical use of the proposed UML is limited to those kinds of systems that can be 
modeled using the proposed modeling constructs (i.e., data-oriented and function-oriented 
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systems). The current version of this profile does not cover more complex specifications such 
as process-oriented systems.  
 
The assembly operational profile is an extended operational profile since it includes 
additional information about the components and their connections within the assembly as 
well as the operational information defined for such assembly. This extension reduces the 
work required to manage additional artifacts (e.g., assembly specification). 
 
The Domain Characterization Method yielded good results in the experiments performed. 
The main difficulty in using this technique is the determination of the differentiation criteria. 
Determining if the resulting characterization does really determine or influence the 
component behavior is out of the scope of this dissertation. However, the best theoretical 
characterizations are those that determine the best attributes which also have an impact on the 
software execution. Future research will address this issue. 
 


5.7 Summary  
This chapter has presented the evidence supporting the claim: “Operational information can 


be specified in a well-suited form that improves the reliability assessment.”  The solution to 
the problems derived from this claim is instantiated in the second phase of the Test Profile 
Analysis Framework. 
 
The solution includes the use of the assembly operational profile that is specified during the 
assembly definition process. The notation uses the modeling constructs defined in the UML 
Operational Characterization Profile.  
 
The contributions derived from this chapter include: 


• A notation, called the UML Operational Characterization Profile, to specify 
operational information. 


• A basic technique to characterize complex domains where the physical stored 
information does not provide enough information to differentiate and manipulate 
distinct data items for testing purposes.  


 
The next chapter will address the claim about the need for formal models to perform the 
execution trace composition and the execution trace prediction.  
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Chapter 6  


Composing and Predicting Execution 


Traces 


This chapter addresses the supporting claim: “It is feasible to compose execution trace 


information from partial information of different components.” The evidence to support this 
claim is provided by the claims: “It is feasible to compose execution traces that represent the 


real composite trace” and “It is feasible to predict execution traces from a limited set of 


previously executed test cases”. The evidences supporting these claims include two major 
issues: predicting execution traces based on limited information and defining a composition 
model based on such execution traces.  
 
The Execution Composition Phase is the proposed solution to the issues mentioned above. 
Figure 29 shows the location of this phase in the framework. The Assembly Test Profile is 
the output artifact produced by this phase. This artifact is the practical solution supporting the 
claim addressed in this chapter.  
 
The content of this chapter is structured as follows: First, a detailed description of the 
problem is presented. Second, the rationale for the solution is explained. Third, a description 
of the task, models, and artifacts used through the framework’s phase are presented. Fourth, a 
description of the formal models supporting the phase is provided. Fifth, a set of examples is 
presented to illustrate the solution proposed for the problem addressed in this chapter. Sixth, 
the implementation of the solution is described. Finally, a discussion about the results, 
limitations, and future extension of the proposed solution is presented. 
 


6.1 Problem Description 
Two problems have to be solved to support the claim: the problem of having limited 
information and the problem of how to connect execution information from different 
component test profiles. These problems are important since their solution provides the 
foundation to consolidate the reliability-related information provided by component test 
profiles.  
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The problem of the composition of component execution traces into assembly execution 
traces is addressed by defining a composition model. There are several works that address the 
model-based composition. The models are based on different formalisms such as statecharts 
(Lüttgen et al., 2000), Petri-nets (Anisimov et al., 2001), process algebras (Wallnau et al., 
2002b), Predicate Transition Nets and Temporal Logic (Yujian et al., 2006). The main goal 
of these formal models is the definition of a clear and unambiguous executable semantics. 
Examples of applications of formal semantics are model checkers (Gao et al., 2006), 
simulators (Narayanan and McIlraith 2002), and test case generators (Amyot et al., 2005). 
 
 


 
Figure 29. Framework Expanded View with Focus on the Third Phase. 


 
The key part of any formalism resides in the basic information used to define the model. For 
example, some test case generators use a formal model based on extended state machines that 
represent message interactions between components. In this case, the basic information is the 
message interactions and the ordering defined between them. 
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In this research, the basic information is the execution-related information included in the 
component test profiles (i.e., execution traces). Then, the composition model uses such 
execution traces. 
 
Intuitively, the composition problem is addressed by matching test cases. Figure 30 shows 
the composition process that matches test cases between the output value and the input value 
of two component test profiles. The ideal composition is achieved if the set of test cases in a 
component test profile covers the entire domain. However, the real component test profiles 
have a limited number of test cases (c.f., Chapter 4).  This limited number of test cases might 
not have the corresponding test cases required for the composition process. This research 
addresses this issue by defining prediction models of component test profiles. 
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Figure 30. Component Test Profile Composition Process. 


 
Prediction models are a popular issue addressed by several research areas such as statistics, 
engineering, chemistry, social sciences, and biology. Several works on prediction models 
have been developed for different scenarios. Some of these works are based on regression 
models, classification trees, Bayesian techniques, and artificial neural networks (Duda et al.,  
2000) among others. 
 
The problems addressed in this chapter are the definition of an execution trace prediction 
model based on the information provided in the component test profile and the definition of a 
composition model which combines the individual component test profile information into an 
assembly test profile. The approach to solve these issues is described in the next section. 
 


6.2 Solution Approach 
The solutions proposed to address the problems described in Section 6.1 are described as 
follows: First, the proposed models to predict execution-related information are described. 
These models use different techniques such as artificial neural network, classification trees, 
and the best binary matching technique. Second, the composition model is presented. This 
composition model assumes the existence of the prediction model.  Otherwise, a correct 







 


- 81 - 


composition can not be guaranteed. A correct composition means that the composition result 
represents an acceptable approximation of the real composition.  
 


6.2.1 Predicting Execution Traces 


The strategy to overcome the limited information problem is based on defining a prediction 
model. This model uses the inputs, outputs, and execution traces to train the prediction 
model. 
 
The prediction model requires predicting execution node frequencies rather than predicting 
the entire execution trace. This characteristic comes from the information required by the 
reliability model (c.f., Chapter 7).  
 
Another issue to consider is the characteristics of the data used for the prediction. The data is 
taken from the component testing profiles (c.f., Chapter 4) which is composed of input data, 
output data, and execution traces. The most simple and easy data to characterize are the 
execution node frequencies. The high heterogeneity that both input and output data may have 
requires a detailed analysis. 
 
In general, as shown in Chapter 5, any domain is suitable for being characterized as a set of 
attributes. Using this characterization, any component test profile is organized as illustrated 
in Figure 31. This figure shows a diagram where the information about the test profile is 
represented as a set of tables having r input attributes, s output attributes, and t execution 
nodes defined for the component. The execution trace information stores the frequency found 
for a particular execution node for a specific execution trace. The frequency for the Ej 
execution node is denoted by |Ej|.  
 


 
Figure 31. Component Test Profile Information Required for Prediction. 


 
The input and output attributes contain diverse data. This diversity is found in all different 
domain attributes. For example, it is possible to have one attribute with an Integer domain 
(i.e., 1 to 65535) or the case when the range is defined as a set of nominal values (i.e., gender 
attribute).  This prediction model should account for this heterogeneity.  
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Figure 32. Execution Node Prediction Approach. 


 
The attribute heterogeneity issue is addressed by selecting the best prediction model for each 
execution node frequency as shown in Figure 32. The prediction models considered in this 
research include artificial neural networks, classification trees, and a qualitative technique 
developed for cases where none of the two previous models provide good predictive results. 
This qualitatively technique is called the Best Binary Matching Technique.  
 
The prediction goodness of artificial neural networks is determined by estimating the mean 
square prediction error using a validation set. This validation set is a sample of the original 
data set that is not used in the model training. Similarly, the accuracy of classification trees is 
assessed by estimating the error in the classification. The selection of the model, however, 
requires an analysis on a case by case basis since each model has configuration parameters 
modifying the model performance. 
 


6.2.2 Composing Execution Traces 


The execution composing problem uses the execution-related information (i.e., execution 
traces). Intuitively, the assembly execution trace is derived from the execution traces from 
the components in the assembly. For a simple case, where two components are connected 
sequentially, the resulting assembly execution trace is defined as the concatenation of the 
execution traces of those two components. The key issue in the composition is the 
characterization of conditions allowing this concatenation.  
 
The proposed formal composition model uses a matching mechanism to characterize the 
composition of two test cases. The matching mechanism is defined as a predicate over the 
output domain and the input domain of two component test profiles. In other words, the 
composition of two test cases is allowed when the predicate over these test cases is true.  
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6.3 Solution Description 
This section describes how the ideas in the previous section are implemented in the 
framework. First, a description of the artifacts is provided. Next, a description of the task 
required for the assembly test profile construction is explained. 


6.3.1 Artifacts Description 


The input artifacts required in this phase are a set of component test profiles and the 
assembly operational profile. The information required from the assembly operational profile 
is the specification of which components are required for the assembly. The output artifact is 
the Assembly Test Profile. 
 
The Assembly Test Profile artifact contains the results of the composition of the component 
test profiles. This artifact is similar to the component test profile but it includes additional 
information concerning the composition process and the uncertainty of prediction models.  
 
A template for every artifact is provided in Appendix B. 
 


6.3.2 Task: Create Composite Test Profile 


The Create Assembly Test Profile task is performed during the third phase of the framework. 
The purpose of this task is the generation of the assembly test profile (i.e., composite test 
profile) required for the reliability assessment. The assembly test profile can be seen as a 
single component.  
 
The activities involved in this task are the selection of the best prediction model for every 
component test profile and the composition process supported by the prediction models. The 
first activity analyses the uncertainty of different prediction techniques in selecting the most 
appropriate prediction model for each component test profile. The second activity defines the 
matching criteria for performing the composition process.  
 


6.4 Formal Models 
This section provides a description of the formal models required for composing and 
predicting execution traces. Since prediction models are based on different techniques, this 
section only outlines the most important characteristics of such kind of techniques. This 
research proposes the Best Binary Matching technique for cases where the other techniques 
do not provide good results. The composition model is described by formalizing several 
items that are used in the test profiles. The key part of this formalization is defined by the 
composition rule which defines the matching criteria. 
 


6.4.1 Execution Trace Prediction Model 


The techniques proposed in this work to address the prediction problem are based on 
artificial neural networks, classification trees, and a qualitative model named as the Best 
Binary Matching Technique. This section provides an overview of such techniques. 
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Artificial Neural Networks 
An artificial neural network (ANN) or commonly just neural network (NN) is an 
interconnected group of artificial neurons (or nodes) that uses a mathematical model for 
information processing based on a connectionist approach to computation. A neural network 
has an input layer, processing layers and an output layer (Duda et al.,  2000). Figure 33 
shows a typical representation of an artificial neural network. 
 


INPUT


LAYER


HIDDEN


LAYER


OUTPUT


LAYER


 
Figure 33. Representation of an Artificial Neural Network. 


 
The information in a neural network is distributed throughout the processing layers. Each 
processing layer is made up of many nodes. Each node simulates a neuron by its 
interconnection to other nodes. The arrangement of outputs forms the final output from the 
neural network. The neural network is taught by correcting the false or undesired outputs 
from a given input. Training results in a different set of nodes being used and in an 
adjustment in the weights of the interconnections to other nodes.  
 
The weights and adjustments are similar to a least mean squares fit of a line to a number of 
points. Just as statistical analysis reveals underlying patterns in a collection of data, a neural 
network locates consistent patterns in a collection of data, based on a set of predefined 
criteria. 
 
The input layer is connected to the raw data. The middle (or hidden) layer is used to 
consolidate the results of the input layer, and the output layer provides the results of the 
consensus propagated from the previous layers. In practice, there are usually many more 
nodes in the input layer than in the middle layer, and the number of nodes in the output layer 
usually corresponds to the number of possible outcomes. 
 
Detailed information about ANN can be found in (Duda et al.,  2000). 
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Classification Trees 
Classification trees (CT) have been used widely in operation research for decision analysis. 
However, from other perspectives, a classification tree is a prediction model that has been 
used for data classification or data mining. More descriptive names for such tree models are 
decision tree or reduction tree. In these tree structures, leaves represent classifications and 
branches represent conjunctions of features that lead to those classifications (Duda et al., 
2000). 
 
Classification trees are popular mechanisms since they are simple to understand and 
interpret. Additionally, classification trees use a white box model. If a given result is 
provided by a model, the explanation for the result is easily replicated by simple 
mathematics. Similarly to the ANN, this kind of models does not have any assumptions about 
the input data. 
 
A classification tree is built through a process known as binary recursive partitioning. This is 
an iterative process of splitting the data into partitions, and then splitting it up further on each 
of the branches. 
 
Figure 34 shows an example of a classification tree (XLMiner ). The procedure to build such 
tree starts with the data or the training set. The classification label (e.g., "purchaser" or "non-
purchaser") is known and it is pre-classified for every record in the training set.  All of the 
records in the training set are grouped together as a table. The algorithm then systematically 
tries breaking up the records into two parts, examining one variable at a time and splitting the 
records on the basis of a dividing line in that variable (e.g., income > $75,000 or income <= 
$75,000).  The goal of this process is to attain a homogeneous set of labels (e.g., "purchaser" 
or "non-purchaser") in each partition.  This splitting or partitioning is then applied to each of 
the new partitions. The process continues until no more useful splits can be found. The heart 
of the algorithm is the rule that determines the initial split rule. 
 


 
Figure 34. Example of a Classification Tree. 


 
Detailed information about CT can be found in (XLMiner 2007) and (Duda et al., 2000). 
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Best Binary Matching Technique 
The Best Binary Matching Technique (BBMT) is proposed for cases when ANN and CT do 
not provide good results. This technique finds the most similar point in a given set of points. 
This technique creates a binary characterization of such points and then it determines the 
most similar point by computing the minimum distance between those points. 
 
This technique works better on cases where there is a considerable amount of categorical 
attributes defined for every point. Numerical attributes are grouped into discrete groups. For 
example, Table 17 shows a data set of points characterized by two categorical attributes and 
one numerical attribute.  
 


Attribute Output 
Age Gender Country Numerical 
33 Male Mexico 4 
25 Female USA 3 
12 Male Korea 8 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 17. Data Set Example for BBMT. 


 
The BBMT requires transforming the information in the data set into a binary representation. 
This transformation generates new columns for every categorical value of every categorical 
attribute. Numerical attributes are transformed into categorical values by defining classes4.  
The resulting binary representation of the information shown in Table 17 is presented in 
Table 18. In this case, the Age attribute was transformed into seven classes. 
 


Attribute Output 
Age  
G1 


Age 
G2 


Age 
G3 


….. Age 
G7 


Gender 
Male 


Gender 
Female 


Country 
Mexico 


Country 
USA 


Country 
Korea 


…. Numerical 


0 0 1 . 0 1 0 1 0 0 … 4 
0 1 0 . 0 0 1 0 1 0 … 3 
1 0 0 . 0 1 0 0 0 1 … 8 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 18. Binary Representation of the Data shown in Table 17. 


 
Then, the prediction looks for the most similar point that matches the corresponding input 
point. The criterion for selecting the most similar point is based on finding the minimum 
number of unmatched values (or bits). This similarity criterion may represent a trivial 


                                                 
4 The number of groups follows a pragmatic justification since it is easy to manage smaller data sets. 
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solution. However, the criterion could be improved by performing more complex analysis to 
find the most significant attributes and, then, use those attribute only.  
 
We include an experimental metric to measure the relative error found in the point selection 
process5. This measure is based on the number of bits that are different between the matched 
points (i.e., the distance between those points). Intuitively, the smaller the distance the higher 
the confidence in the value used for such input. We call this distance as the non-normalized 
selection error. 
 
The non-normalized selection error for two test points tpj and tpk from different test profiles 
is defined as  


δ (tpj • tpk) = distance(tpj.o XOR tpk.i) 


 
where tpj.o denotes the binary value for the output for the j-th test point and tpk.i denotes the 
input binary value for the k-th test point, and distance is defined as the number of bits having 
value 1. These values are produced by the XOR operation. 
 
This metric could be used as a measure of the cumulative computed selection error for more 
than two sequentially-composed components. This metric is biased by the range of values for 
each sub-domain. One way to overcome this situation is by normalizing the values of this 
metric to values referenced to the maximum value found. 
Let D denote the set of all distance values produced by the best matching criterion between 
two test profiles. The distance represents the number of different bits. The normalized 
selection error for any distance δk ∈ D is defined as 


 
Next, this metric needs to be extended to measure the cumulative error produced in the test 
point selection among several test profiles. We define the normalized cumulative selection 
error,∆ , as the average of all normalized selection errors found in a composite test point: 


 
Then, the i-th subdomain cumulative error selection is the average error computed from those 
composite test points located in the i-th subdomain. The sub-domain cumulative error 
selection is defined as 


 
where si denotes the i-th subdomain and m denotes a test point in si. 


                                                 
5 We use the term “experimental” since our research is still looking for the statistical significance of such measure. The 


current use of such measure is just for descriptive purposes.  
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The domain cumulative error in selection can be estimated using a weighted sum of the 
corresponding subdomain cumulative errors and the subdomain operational probabilities.  
 


6.4.2 Abstract Execution Composition Model 


 
The abstract execution model is defined formally by abstracting any system using the 
information contained in its test profile. This section uses the term system, but it can be 
interchanged with the term component without any problem. 
 
The strategy followed to describe the composition model is by defining the basic building 
block used for the formalization. Then, a set of composition rules are stated for the 
composition process. 
 
The basic building blocks defined for this model are: 


• Execution Nodes. A finite set E of labeled execution nodes. 
• Basic Data Domains: A set BD of basic data domains. These domains represent basic 


data types such as  
 


BD = {Integer, Real, Character, SEQSEQSEQSEQ(Character)}6. 
 
The following definitions provide the characterization of the data contained within test 
profiles.  
 


Definition 6.1. A Constrained Basic Data Domain, RD, is a subset of a basic data 
type defined in the set of basic data domains. This subset is defined as 
   


RD = {x | istypeof(x) ∈ BD ∧ pred(x)=TRUE)} 
 
where x represents any element in the subset satisfying two conditions. The first 
condition states that the data type associated with such element is contained in the set 
of basic data domains (i.e., using the istypeof predicate). The second condition 
focuses on the specific constraints associated with each subset. These constraints are 
defined using the pred predicate.  


 
 


Definition 6.2. A Complex Data Domain, CD, is a tuple of constrained basic data 
domains such as 


CD = <rd1, rd2, rd3,…,rdn > 


 
where rd1, rd2, … rdn denotes constrained basic data domains.  


                                                 
6 The expression, SEQSEQSEQSEQ(Character), denotes all possible sequences of characters. In the computer jargon this is known as the 


String data type. 
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Definition 6.3. An Input Domain, I, is a tuple of complex data domain such as 


I = <cd1, cd2, cd3,…,cdr > 


 


where cd1, cd2, … cdr denotes complex data domains.  
Similarly, an Output Domain, O, is a tuple of complex data domain such as 


 


O = <cd1, cd2, cd3,…,cds > 


 


where cd1, cd2, … cds denotes complex data domains. 
 
 


Definition 6.4. An Input Domain Instance, I, is a tuple such as 


I = <i1, i2, i3, …, ir> 


 


where i1∈ cd1, i2∈ cd2, i3∈ cd3, … ir∈ cdr. This tuple represents a set of actual values 
(or instances) defined for every constrained basic data domain. The definition for the 
Output Domain Instance, O, follows a similar definition. An Output Domain 


Instance, O, is a tuple such as 


O = <o1, o2, o3,…, os> 


where o1∈ cd1, o2∈ cd2, o3∈ cd3, … os∈ cds. 


 
 


Definition 6.5. A Test Profile, TP, is a tuple such as 
 


TP = <P, I, O, E> 


 
where I denotes the input domain and O the output domain. E denotes a set of 


labeled execution nodes and P  denotes a set of tuples such as 


P  = <I, O,,,,    E > 


 
where I is an input domain instance, O is an output domain instance, and E represents 


a sequence of labeled execution nodes where E ∈ SEQSEQSEQSEQ(E). 


 
 
Next, additional definitions are provided to characterize the matching of information between 
instances of input and output domains.  
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Definition 6.6. Domain Matching Condition. Given an input domain I and an 


output domain O, it is said that these domains satisfy a domain matching condition, 


denoted by I ⇛O, when for every complex data domain, cdi in I , there is an 


equivalent  complex data domain cdj in O. Two complex data domains are equivalent 


when istypeof(cdi) = istypeof(cdj). 
 
 


Definition 6.7. Instance Equivalence Condition. Given an input domain instance I 
and an output domain instance O such that I ⇛O, it is said that these instances 


satisfy an instance equivalence condition, denoted by I ≈ O, if for every instance ik 
and its corresponding match oj, the predicate covered(ik, oj) = TRUE. 
 
 


The predicate covered (ik, oj) is defined as a function that returns true if ik is mapped to oj and 
returns false otherwise. The predicate covered plays an important role in the composition 
since it determines which instance can be used for the composition.  
 
The composition mechanism is defined as follows. We use the notation Ti(I ) and Ti(O) to 


denote the corresponding input and output domains of the Ti test profile. 
 
 


Definition 6.8. Execution Trace Composition. Given two execution node 


sequences, e1 and e2, the composition of sequences, denoted by e1⊕ e2, is defined as 


the concatenation of both execution sequences. Formally, the composition of two 


execution traces, such as e1= a1a2a3...an and e2=b1b2b3...bm, is defined as e1⊕ e2 = 


a1a2a3...anb1b2b3...bm. 


The properties of this execution trace composition operator are 


• Antisymmetric, e1 ⊕ e2 ≠ e2⊕ e1  


• Identity, e1 ⊕ ε = ε ⊕ e1 = e1, where ε is an empty trace. 


 
The next rule is defined following an algorithmically oriented approach. 
 


Test Profile Composition Rule. Given two test profiles,  
 


Tj = <Pj, Ij, Oj, Ej>,   Tk = <Pk, Ik, Ok, Ek>, 


 
where the output domain of the jth-profile and the input domain of the kth-profile 
satisfy the domain matching condition Tj(O) ⇛ Tk(I ). Then, the executable 


composition of two test profiles, denoted by Tj → Tk, is defined as follows: 
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• A new test profile, Tjk, is defined. The elements of this test profile are 
instantiated as follows: 


Tjk = <Pjk, Ij, Ok, Ejk>  


where 
Ejk = Ej ∪  Ek, representing the union of both labeled execution node sets.  
Pjk, representing the composite tuples Pjk = <Ic, Oc,    Ec > from both test 


profiles.  This set of tuples is generated following the next algorithm: 
o For every p∈Pj, find a tuple q∈ Pk satisfying the instance equivalence 


condition, such that p.O ≈ q.I. 
o Add a new tuple <ic, oc,    ec > in Pjk such that 


ic = p.i 
oc = q.o  


ec = p.e ⊕ q.e  


where p.i denotes the input domain instance in p, q.o denotes the 
output domain instance in q, and p.e and q.e denote the corresponding 
execution trace.   


 


6.5 Example 
This section presents examples to illustrate how the prediction and composition models are 
applied. This section uses the mathematical computation assembly defined in previous 
chapters. A more elaborate example is presented in Chapter 8. 
 


6.5.1 Prediction Models for the Square-Root Computation Component 


The data provided in the square-root computation component test profile is shown in Table 
19.  


INPUT OUTPUT |A| |B| |C| |D| 
60662 246.2965698 1 13 1 1 
55440 235.4570007 1 13 1 1 
48820 220.9524841 1 12 1 1 
22426 149.7531281 1 12 1 1 
42661 206.5453949 1 12 1 1 
64047 253.0750885 1 13 1 1 
10035 100.1748505 1 11 1 1 
30172 173.7008972 1 12 1 1 
23309 152.6728516 1 12 1 1 
58607 242.0888214 1 13 1 1 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 19. Data Required for the Square-Root Computation Component Prediction Model. 
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In this case, the component test profile requires only one prediction model since execution 
node B is the only node that shows variability. The other nodes keep a constant value through 
all test cases.  
 
Artificial Neural Networks provides a good prediction model due to the characteristics of the 
data defined for this component. This component has only one numerical attribute as input 
and there were a considerable number of test points for the ANN training. Figure 35 shows 
the Mean Squared Error (MSE) found during the training and validation of the ANN defined 
for the B execution node. In this case the model was trained using a random sample 
containing 600 test cases. Two hidden layers were specified and 100 training cycles (i.e., 
epochs) were used.  The errors shown in this model do not have a significant impact on the 
prediction since the mean square error is less than 1 occurrence. This prediction error is 
usually incorporated into the assembly test profile. 
 


 


 
Figure 35. MSE Found in ANN Training and Validation Phases. 
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6.5.2 Mathematical Computation Assembly Composition 


This example uses the basic example describing the assembly composed of the square root 
and logarithm computation components.  
 
We use two component test profiles to illustrate the concepts defined previously. The 
assembly in the example has two components; one computes the square root of integer values 
and the second computes the logarithms of real values, denoted as Csqr and Clog respectively. 
This assembly is described in Section 3.5 and the square root computation component test 
profile is described in Section 4.4.1.  
 
The component test profile for the Csqr component is defined as follows 
 


TPsqr = <Psqr, Isqr, Osqr, Esqr>, where  


Esqr = {A, B, C, D} 
Isqr = < < isqr ∈ Integer >> 


Osqr = < < osqr ∈ Real  ∧ [osqr > 0 and  osqr < 300] >> 


Psqr  = {<1,1,ABBBCD>, <16, 4, ABBBBCD>, ….} 


 
Similarly, the component test profile for the Clog component is defined as follows 
 


TPlog = <Plog, Ilog, Olog, Elog>, where  


Elog = {H, I, J, K} 
Ilog = < < ilog ∈ Real >> 


Olog = < < olog ∈ Real  >> 


Plog  = {<1,0, HIJK>, <3.5, 0.544, HIJJJK>, ….} 


 
The composition requires meeting the domain matching condition, Ilog ⇛Osqr. This 


condition is satisfied since istypeof(Real) = istypeof(Real). Next, we need to state the 
instance equivalence condition by defining the predicate covered. In this case, the predicate 
covered is defined as follows 




 <−


=
Otherwise


ji
jicovered


FALSE


TRUE
),(


ξ  


 
This predicates is simple since it only compares the numeric distance between two elements 
(i.e., the value selected is the one that is less than a threshold value denoted as ξ). 
 
Finally, using the previous information, the composite test profile is described as  
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TPsqr-log = <Psqr-log, Isqr-log, Osqr-log, Esqr-log>, where  


Esqr-log = {A, B, C, D, H, I, J, K} 
Isqr-log = < < isqr-log ∈ Integer >> 


Osqr-log = < < osqr-log ∈ Real >> 


Psqr-log  = {<1,0, ABBBCDHIJK>,  ….} 


 
In practice, the instance meeting the equivalence condition is substituted by using the 
predicted test case or test point. 
 


6.6 Tool Support and Implementation Issues 
The tool performing the prediction and composition is implemented as a set of scripts in the 
Microsoft Access System (MS Access). MS Access (Friedrichsen 2003) is a relational 
database management system developed by Microsoft. This system combines the relational 
Microsoft Jet Database Engine with a graphical user interface. Additionally, Microsoft 
Access can use data stored in Access/Jet, Microsoft SQL Server (Nicol and Albrecht 2002), 
Oracle, or any ODBC-compliant data container (Geiger 1995). One advantage of MS Access 
is that professional applications can be built in a relatively short time.  
 
The powerful statistical environment R is used to implement the prediction models. R is a 
language and environment for statistical computing and graphics (Maindonald and Braun 
2006) (CRAN 2006). It is a GNU project which is similar to the S language and environment. 
R provides a wide variety of statistical packages (e.g., linear and nonlinear modeling, 
classical statistical tests, time-series analysis, classification, and clustering, among several 
others) and graphical techniques.  
 


6.7 Discussion 
This chapter has described elements addressing the claims “It is feasible to compose 


execution traces that represent the real composite trace” and “It is feasible to predict 
execution traces from a limited set of previously executed test cases”. Such elements include 
a composition model for the first claim and a prediction model for the second. 
 
The proposed composition model is based on abstracting any software component using its 
inputs and outputs. This approach is suitable for a wide range of systems, but there are cases 
where highly interactive systems require a more sophisticated composition model, including 
concurrency and parallelism support mechanisms such as Petri-Nets or Process Algebras.  
 
The proposed approach to address the prediction issue relies on the nature of the information 
contained in the component test profile. This issue should be addressed on a case by case 
basis until we can incorporate more assumptions in the data, such as randomness and a 
specific degree of source code coverage provided by techniques such as code coverage 
analysis. Code coverage analysis is the process of finding areas of a program not exercised 
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by a set of test cases, creating additional test cases to increase coverage, and determining a 
quantitative measure of code coverage (Fenton and Pfleeger 1998) (Jorgensen 1995). 
 
Our research uses the same prediction model in each component. The prediction model, 
however, may be improved by generating an independent prediction model for every 
execution node instead of using the same technique for all of them. One issue to consider 
when moving in this direction is the computational cost required for the selection of the best 
prediction model.  
 
The integration of both models (i.e., prediction and composition models) proposed in this 
dissertation is not completely transparent, since the composition model assumes the existence 
of the matching condition that is implemented in the framework using a prediction value. An 
improvement in such model is the redefinition of the matching condition using composition 
operators for stochastic information. This improvement requires the definition of the 
stochastic information in terms of the prediction models required for the composition. 
 


6.8 Summary  
This chapter has presented the evidence supporting the claim: “It is feasible to compose 


execution trace information from partial information of different components.” The evidence 
supporting this claim is given by the evidence supporting the claims: “It is feasible to 
compose execution traces that represent the real composite trace” and “It is feasible to 
predict execution traces from a limited set of previously executed test cases” The third phase 
of the Test Profile Analysis Framework contains the solutions to the problems derived from 
this claim. 
 
The solution includes the use of a composition model to characterize the execution-related 
information. Additionally, the solution illustrates how prediction models can be defined 
based on component test profile information.  
 
The contributions of this chapter include: 


• An execution composition model based on a data matching abstraction. This model 
composes the information of different component test profiles assembled 
sequentially.  


• An approach for defining prediction models for execution node frequencies. This 
approach uses techniques such as artificial neural networks and classification trees.  


• A prediction technique, named as Best Binary Matching Technique, designed for 
cases when statistical prediction models do not provide good prediction results. 


 
The next chapter will address the claim about the need for formal models to perform the 
reliability assessment of assembly test profiles.  
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Chapter 7  


Prediction Reliability Model  


This chapter addresses the supporting claim: “It is feasible to collect reliability-related 
information from the testing process.” This claim is decomposed into two supporting claims: 
“Trace execution information can be collected from the testing process” that was discussed 
in Chapter 4 and “Execution trace information allows one to define a consistent reliability 


model.” To support the latter claim, an important issue is addressed:  defining a reliability 
model based on the information provided by the component test profiles. The Reliability 
Assessment Phase corresponds to the solution addressing such issue. Figure 36 shows the 
context of the Reliability Assessment phase as well as its required and produced artifacts.  
 
This chapter is organized as follows: First, a detailed description of the problem is presented. 
Second, the rationale for the solution is explained. Third, a description of the task, models, 
and artifacts used in the reliability assessment phase is presented. Fourth, an ad-hoc 
reliability model is described. Fifth, a set of examples to illustrate the proposed solution are 
presented. Sixth, an overview of the implementation is described. Finally, a discussion of the 
results, limitations, and future extension of the proposed solution is included. 
 


7.1 Problem Description 
The problem addressed in this chapter is the definition of a reliability model that uses the 
information from the component and assembly test profiles. This is an important problem 
since its solution provides the theory required for the assembly reliability assessment.  
 
Specifically, supporting claim 2 prescribes the use of execution traces to create a “consistent” 
reliability model. In this research, the term “consistent” implies two aspects: First, the model 
produces an estimate constrained by a point of comparison. This point of comparison is 
determined by the assembly operational profile. Second, the model produces an estimate 
using internal execution information. Therefore, the estimate provides a better 
characterization of the component behavior.  
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SUPPORTING CLAIM 2: RELIABILITY MODEL
Execution trace information allows to define a consistent reliability 
model. 


 
Figure 36. Framework Expanded View with Focus on the Fourth Phase. 


 
Claim number 2 can be decomposed in two problems. The first problem addressed in this 
chapter is related to the use of execution traces to produce a reliability estimate improving 
the black-box models. Black-box reliability models do not consider any internal information 
of the system. These models consider only the inputs tested and the failures found. For 
example, the model proposed by (Miller et al., 1992) produces an estimate using the number 
of failures found and the number of test cases performed. Other works, classified as input-
domain models, consider not only the number of test cases performed but also the size and 
randomness of the input domain defined for the system (Nelson 1978).  
 
The problem addressed in this chapter is related to the incorporation of operational 
information into the reliability assessment. The use of operational information to weight 
reliability estimations is a well-known strategy in Software Reliability Engineering (Musa 
2004b). Other works involving experiences in using operational profiles are described 
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elsewhere (Musa 1993) (Woit 1993). Examples of models describing operational information 
are presented in Chapter 5. 
 
The reliability model proposed in this chapter assumes that all test cases in any component 
test profile are successful test cases (i.e., no failure are found). Moreover, the failure 
independence between execution nodes is also assumed.  
 
The approach to solve the issues mentioned above is described in the following section. 
 


7.2 Solution Approach 
The solution approach is described as follows: First, the recursive composition approach is 
discussed. Second, the structure of the information contained within component test profiles 
that is used by the reliability model is explained. Third, the hierarchical approach used to 
define the reliability model is discussed. Finally, the strategy for estimating the confidence 
interval is described.  


 


7.2.1 Recursive Composition Approach 


Chapter 6 describes the composition model for sequential assemblies of components. The 
resulting composite model (i.e., assembly test profile) can be seen as another component test 
profile which includes additional information describing the prediction uncertainty. Figure 37 
shows a graphical representation of this property. For example, the assembly Cc located at 
the bottom of the figure has three components (i.e., Ci, Cj, and Ck). The resulting assembly 
test profile can be represented as another component, named as Cc. The next upper assembly, 
named as C2, has three components (i.e., Ca, Cb, and Cc). The same explanation follows for 
the upper levels until the entire system can be seen as the component S1.  
 
Using this approach, it is possible to define complex systems that are modeled as sequentially 
recurrent assemblies of components. This recursive property of the composition is also 
incorporated into the reliability model. Therefore, the reliability model uses the component 
test profile as a basic unit of abstraction.  
 


7.2.2 Structure for the Reliability-related Information  


The reliability model proposed in this chapter uses the structure of the information provided 
by assembly test profiles and the assembly operational profile. Figure 38 shows a diagram 
representing this structure. Rectangles denote basic information items such as execution 
nodes, execution traces, subdomains, and domains. Rectangles are connected vertically by 
lines denoting existence constraints. For example, the two lower boxes and their 
corresponding connection represent the fact that an execution trace is composed of one or 
more execution nodes. Similarly, a subdomain is composed of one or more execution traces. 
At the top level, the domain is composed of one or more subdomains and it represents the 
entire space of possible behavior or inputs for any component operation. Execution nodes 
and execution traces are gathered from component test profiles. The domain and subdomains 
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are gathered from the assembly operational profile. Figures illustrating the ideas are shown at 
the right side. 
 


 
Figure 37. Assembly Abstraction Approach. 


 
 
This structure is preserved in the reliability estimation. In other words, the reliability model 
uses this hierarchical structure. First, the execution node probability of failure is estimated. 
Next, the execution trace probability of failure is estimated using execution node 
probabilities of failure. Following the same approach, the subdomain probability of failure is 
estimated using the execution traces probabilities of failures. Finally, the domain probability 
of failure is estimated using the subdomain probabilities of failure. 
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Figure 38. Reliability-related Information Structure. 


 


7.2.3 Probability of Failure based on Execution Knowledge 


The core part of the reliability model relies on the assumption that any execution node 
occurrence represents a distinct scenario where such execution node is tested. Such 
assumption is based on the idea that occurrences are produced by different test case inputs.  
There are cases where such assumption might not hold such as the interruption pooling 
mechanism where there is a loop over the same instruction waiting for an external response.  
 
This model does not assume any distribution for the execution node probability of failure. 
The probability of failure is calculated using a Bayesian Estimator proposed by (Miller et al.,  
1992). This Bayesian approach allows the incorporation of prior assumptions into the test 
results but our model does not incorporate any prior assumption. This Bayesian estimator can 
be seen as a black-box approach to estimate the execution node probability of failure since 
there is no additional information within the execution node.  
 
The estimation of the execution node probability of failure is similar to the problem of 
estimating the probability of finding a black ball after drawing t white-balls from an urn with 
replacement. This problem dates back to Laplace’s work, when he derived the formula7 (1): 
                                                 
7 This is a special case for the Bayesian approach where the prior Beta Distribution has the parameters a=1, b=1. 
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The execution node probability of failure is estimated using (1). A detailed explanation of 
this formula can be found in (Miller et al., 1992). 
 
Execution traces are the next information level according to the information structure 
described in Section 7.2.2. An execution trace represents an array of components connected 
sequentially. Intuitively, a failure in any execution node produces a failure in the 
corresponding execution trace. In other words, the execution trace is connected forming a 
series structure. Based on these ideas, the execution trace probability of failure is defined as 
 
Execution trace probability 


of failure  
=   1- (Prob. of no failure in all execution nodes) (2) 


 
The probability of no failure in all execution nodes contained in the corresponding execution 
trace is estimated by using basic probability rules 
 


Prob. of no-failure in all 
execution nodes 


=  


(1- Prob. of failure in first execution node) × 
(1- Prob. of failure in second execution node) × 
(1- Prob. of failure in third execution node) × 


. 


. 
(1- Prob. of failure in last execution node) 


(3) 


 
Subdomain is the next information level. In this case, the subdomain probability of failure is 
calculated as the mean of the all execution trace probability of failures contained in such 
subdomain. The use of this estimate is based on the assumption that the points in a given 
subdomain characterize the behavior of such subdomain. 
 
The domain probability of failure is calculated in a similar way as in the subdomain 
probability of failure. However, at this step the probability calculation is slightly modified to 
incorporate operational information, as discussed in the next section. 
A more detailed description of the reliability model is presented in Section 7.4.1. 
 


7.2.4 Incorporating Operational Information 


The approach to incorporate operational information is by calculating a weighted sum of the 
corresponding subdomain probabilities of failure with the probabilities representing the 
expected subdomain usage. Figure 39 shows a graphical representation of the incorporation 
of subdomain operational probabilities into the domain probability of failure estimation.  
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Figure 39. Incorporating Subdomain Usage Probabilities into the Reliability Estimation. 
 


7.2.5 Point Estimation and Interval Estimation 


The ideas mentioned in previous sections emphasize how point estimation is performed. This 
estimation is complemented with interval estimation which provides additional information 
about the estimation variance.  
 
Bootstrap Sampling or Bootstrapping (Shelemyahu and Kenett 1998) is a well-known 
technique to perform interval estimation. Bootstrapping is a computer-intensive statistical 
technique. The payoff for such intensive computations is freedom from two major limiting 
factors that have dominated classical statistical theory since its beginning: the assumption 
that the data conform to a bell-shaped curve, and the need to focus on statistical measures 
whose theoretical properties can be analyzed mathematically. The name "bootstrap" was 
derived from an old saying about pulling oneself up by one's bootstraps. In this case, 
bootstrapping means redrawing samples randomly from the original sample with 
replacement. 
 
The basic idea of Bootstraping is shown in Figure 40. This technique is used to assess the 
statistical accuracy of sample data (i.e., statistics of sample). The assessment is performed by 
taking N bootstrap samplings and computing the statistics from each bootstrap sampling. The 
values of bootstrap statistics are used to evaluate the statistical accuracy of the original 
sample statistics (i.e., by building the distribution of such sample statistics). There are 
distinct approaches to calculate a confidence interval. Our model determines the non-
parametric interval estimation by selecting the 5th and 95th percentile of the empirical 
distribution produced by resampling. These two percentiles formed the limits for the 90% 
bootstrap percentile confidence interval. 
 
A more detailed description of the Bootstrap technique can be found in (Shelemyahu and 
Kenett 1998) and in (Cheng 1995). 
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Figure 40. Bootstrap Sampling Approach. 


 
 


7.3 Solution Description 
This section describes how the ideas discussed in the previous section are instantiated into 
the proposed reliability analysis framework. A description of the artifacts and the task 
required for this phase are presented.  
 


7.3.1 Artifacts Description 


The input artifacts required in this phase are the assembly test profile and the assembly 
operational profile. The output artifact is the reliability assessment. The Assembly Test 


Profile artifact represents the composite behavior of the assembly, and the Assembly 


Operational Profile provides the point of reference used to weight the reliability assessment.  
 
The Reliability Assessment artifact contains the results of the reliability assessment including 
both point and interval estimations. 
 
A template for every artifact is provided in Appendix B. 
 


7.3.2 Task: Perform Reliability Assessment 


The Perform Reliability Assessment task is done during the fourth framework’s phase. The 
purpose of this task is the calculation of the assembly reliability estimate and the confidence 
interval based on the corresponding component test profiles and the assembly operational 
profile.  
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The activities involved in this task include the data processing required to perform the 
reliability assessment. This processing includes the estimation of execution node frequencies, 
execution node probabilities of failure, test case probabilities of failures, subdomain 
probabilities of failures, and the domain probability of failure. Data processing requires tools 
to perform the computations automatically. Specifically, the Bootstrap technique requires a 
considerable amount of computational resources.  
 


7.4 Formal Model 
This section describes the formal reliability model. This description uses the definitions 
given in Section 7.2. The reliability model is described using a set of complementary 
definitions addressing all levels of information described in Section 7.2.2. 
 


7.4.1 Reliability Model 


The following definitions provide the abstract representation of the information required for 
the model. This model uses some of the formalization described in Chapter 6 to define an ad-
hoc reliability model on the top of the composition model. 
 


Definition 7.1 (same as Definition 6.5). A Test Profile, TP, is a tuple such as 
 


TP = <P, I, O, E> 


 
where I denotes the input domain and O the output domain. E denotes a set of 


labeled execution nodes and P  denotes a set of tuples such as 


 
P  = <I, O,,,,    E > 


 
where I is an input domain instance, O is an output domain instance, and E represents 


a sequence of labeled execution nodes where E ∈ SEQSEQSEQSEQ(E). Where SEQSEQSEQSEQ(E) represents 


the set of all possible execution traces. The cardinality of |P | = N, represents the 


number of test points or test cases in the test profile. 
 
  


Definition 7.2. A Component Operational Profile, OP, is a set of tuples such that 
 


OP = <Di,pi > 


 
where Di is a set and pi is the corresponding probability such that Di ⊂ I 


*
, where I * 


denotes the set of all possible input domain instances defined for the input domain I  


and 
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where Di ∩ Dj = ∅, for any i, j such that i≠j and  i, j ∈ {1,2,…K} . 


 
Definition 7.3. The Execution Node Occurrence for the i-th Execution Node in the j-
th subdomain, v(i, j) , is defined as: 


 


 


where freq(m,i) denotes the total number of times that the i-th execution node is 
found in the m-th element (i.e., m represents a test point within the subdomain). 


 
 


Definition 7.4. The Probability of Failure for the i-th Execution Node in the j-th 


subdomain, , where k = <i, j>, is estimated by using the Bayesian Estimator 
(Miller 1992): 


 


 


where v(i, j)  denotes the i-th execution node occurrence found in the j-th subdomain. 
 
 


Definition 7.5. The Probability of Failure for the j-th test point, τ̂ j  , is estimated by: 


 


 


where G.j denotes the multiset representing the execution nodes found in j-th test 
point (i.e., execution trace). 
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Definition 7.6. The Probability of Failure for the i-th subdomain, θ̂ i  , is estimated 


by: 


 


 


where ni denotes the number of points found in the i-th subdomain, ni = |Di|. This 
probability represents the simple average of all test point probabilities of failure.  


 


Definition 7.7. The Domain Probability of Failure, θ̂  , is estimated by: 


 


 


where pi denotes the i-th subdomain operational probability. This probability is 
estimated by computing a weighted sum of all subdomain probabilities of failure.  


 


7.5 Example 
This section describes a basic example to illustrate how the reliability model works. A square 
root computation component is assessed using the model proposed in this chapter.  
 


7.5.1 Square Root Component Reliability Assessment 


The information required for the reliability model includes the assembly operational profile 
and its corresponding component test profile. In this case the assembly has only one 
component. The component test profile, described in Section 4.4.1, includes 5000 test points 
with their corresponding input, output, and execution trace. There are four execution nodes 
defined for this component (i.e., A, B, C, and D). A fragment for the square root component 
test profile is found in Table 10. 
 
A fragment of the component operational profile is shown in Table 20. This table contains 
the required information to identify which test points are contained in each subdomain. Four 
subdomains are defined in this operational profile. We assume that the corresponding 
subdomain usage probabilities are known. 
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Component Operational Profile 


Subdomain Lower Upper Usage Probability 
 
1 
 
2 
 
3 
 
4 


 
0 
 


1001 
 


5001 
 


20001 
 


 
1000 


 
5000 


 
20000 


 
65535 


 
0.2  
 


0.4  
 


0.3  
 


0.1  
 


Table 20. Square Root Computation Component Operational Profile. 
 
 
The model calculates the execution trace distribution to estimate the execution node 
probabilities of failure. The execution trace distribution is built by classifying all execution 
traces according to their subdomain membership and by counting the frequencies of every 
execution node (i.e., Definition 7.3). The resulting distribution is shown as a matrix where 
the rows denote execution nodes and the columns denote subdomains. 
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Next, the execution node probabilities of failure are estimated using the execution trace 
distribution (i.e., Definition 7.4). Table 21 shows the execution node probabilities of failure.  
 


 Execution Node Probability of Failure  
Subdomain A B C D 


1 1.25E-02 1.49E-03 1.25E-02 1.25E-02 
2 9.35E-04 8.67E-05 9.35E-04 9.35E-04 
3 2.60E-03 2.18E-04 2.60E-03 2.60E-03 
4 2.88E-04 2.34E-05 2.88E-04 2.88E-04 
Table 21. Execution Node Probabilities of Failure. 


 
 
The test point probability of failure is estimated using the corresponding execution node 
probabilities of failure (i.e., Definition 7.5). A partial list of the test point probabilities of 
failure is shown in Table 22.  
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Input Output Execution Trace 
Test Point Probability of 


Failure 
1 1 ABCD 0.03847262 
43 6.557438 ABBBBBBBCD 0.04706402 
49 7 ABBBBBBBCD 0.04706402 
55 7.416198 ABBBBBBBCD 0.04706402 
56 7.483315 ABBBBBBBCD 0.04706402 
. 
. 
. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 22. Test Point Probabilities of Failure. 


 
The next step is the estimation of the subdomain probabilities of failure. These probabilities 
represent an average of all test point probabilities in the corresponding subdomain (i.e., 
Definition 7.6).   Table 23 shows the corresponding subdomain probabilities of failure. 
 


Subdomain Probability of Failure 
1 0.049271616 
2 0.003734267 
3 0.010385330 
4 0.001151028 


Table 23. Subdomain Probabilities of Failure. 
 
Finally, the point estimation for the domain probability of failure or component probability of 
failure is (i.e., Definition 7.7): 


0.01640990ˆ =θ  
 
The confidence interval estimation is performed by generating 10,000 Bootstrapping 
samples. Each bootstrapping sample is generated by selecting 5000 random points with 
replacement from the component test profile. The domain probability of failure is estimated 
for each sample. Table 24 shows a partial list of the estimated domain probabilities of 
failures. Figure 41 shows the empirical CDF determined from all bootstrapping samples. 
 


Bootstrapping 
Sample 


Statistic 


1 0.01485100 
2 0.01348857 
3 0.01379082 
4 0.01425098 
5 0.01644132 
. 
. 
. 


. 


. 


. 
Table 24. Domain Probabilities of Failure Estimated by Bootstrapping Sampling. 
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Figure 41. Plot Showing the Bootstrapping Sampling Statistic CDF. 


 
An approximate 90% confidence interval estimation is obtained by selecting the 
corresponding quantiles for 5% and 95%. The resulting estimation interval is (0.0131666, 
0.0167777).  
 


7.6 Tool Support and Implementation Issues 
This research includes the implementation of a module that performs the reliability 
assessment using the component test profile information contained within a MS Access 
database. This tool is implemented with VBA scripts and R statistical functions. The 
statistical functions provided by the R environment reduce the computation time required for 
the bootstrapping sampling.  
  


7.7 Discussion 
This chapter describes the solution that addresses the supporting claim: “Execution trace 
information allows one to define a consistent reliability model.” This chapter describes a 
reliability model fulfilling the aspects about “consistency.”  First, the estimations derived 
from the reliability model are weighted using the operational profile as point of reference. 
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Second, the model uses internal information represented by the set of execution node 
sequences. 
 
As in the case of any reliability model, the proposed model has some limitations. One of such 
limitations is the fact that the model uses the execution node frequencies rather than the 
entire execution trace. The incorporation of such ordering and dependency might require the 
removal of the assumption about the independence of the failures. However, the model 
requires using more sophisticated statistical mechanisms such as Markov Chains or the use of 
Bayesian Techniques to address the dependency issue. Additionally, more sophisticated 
prediction models are required to predict not only the frequencies, but also the sequence 
itself. 
 
Other limitation of this model is the assumptions about the absence of failure in the test 
cases. In practice this assumption is difficult to hold. The incorporation of failures requires 
redefining the reliability model by considering issues such as the location of the failure in 
terms of execution nodes and the possible dependence of such failure. 
 
However, the model presented in this chapter has major advantages. This model can be 
extended to use more information in the execution node probability of failure estimation. 
This extension does not affect the remaining formulations. Additionally, this model provides 
confidence interval estimations without any assumption about the failure distribution. The 
calculations are easily implemented.   
 
Finally, the model described in this chapter can be considered as a general case of some 
input-data models such as the model proposed by (Hamlet 1994). The particular case of this 
model is when there is a only one component with one execution node.  
 


7.8 Summary  
This chapter has addresses the supporting claim: “Execution trace information allows one to 
define a consistent reliability model.”  The solution is a hierarchical model that uses the 
information within component test profiles.  
 
The contributions derived of this chapter include: 


• A reliability prediction model based on the information contained in the component 
test profiles. This model produces a reliability point estimate and the corresponding 
confidence interval estimation. 


• The design and implementation of a software system that partially automates the task 
defined for the fourth phase in the framework.  


 
The next chapter will describe the validation performed for the major claim stated in this 
dissertation. 
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Chapter 8  


Evaluation and Validation 


This chapter addresses the major claim: “It is feasible to produce a meaningful (significant, 


useful) reliability assessment of software component assemblies, before their actual 


integration, based on (i) component abstract execution information collected  in (ii) a limited 


number of previously executed component test cases and (iii) information about the expected 


assembly use”. Evidence supporting this claim is provided in this chapter.  
 


8.1 Validation Approach 
 
The strategy proposed to validate the claims stated in this dissertation follows the claim 
structure shown in Figure 6 (c.f., page 31).  The validation of all supporting claims uses 
experimental results showing that it is feasible to use the framework for reliability 
assessment. Specifically, experimental evidence is provided to sustain every supporting 
claim. 
 
The nature and scope of the experiments reported in this chapter provide evidences to 
guarantee the major claim. However, the estimation of the probability of failure shares the 
same issue that any estimate has: the accuracy and confidence in the estimation depend on 
the quality of the information analyzed. In our research, the quality depends on the prediction 
accuracy. Section 8.4 provides a more comprehensive description of the results obtained 
through experimentation and the scope of such evidences. 
 
The arguments supporting the claims come from two case studies describing systems that are 
defined as sequential assemblies of components. The first system is a face-based monitoring 
security system and the second is a data compression and encryption system. The information 
described for every case study includes a brief system description, a domain characterization, 
a summary of the most relevant artifacts, results from the reliability assessment, and a 
discussion of the results. 
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8.2 Case Study: Security Monitoring System  
This section describes a case study of a Security Monitoring System (SMS). The SMS’ goal 
is to monitor user accesses to different locations based on facial recognition. Figure 42 shows 
the architecture for this system. The SMS is composed of three software components, 
namely, facial detection, image converter, and facial recognition component. These three 
components are connected together in a dataflow architecture which is shown in Figure 42. 
The facial detection component processes the images from different cameras and inspects 
these images to detect the presence of people. If a person is found in the captured image, the 
facial part of the individual is detected and extracted from the image. The image converter 
component converts the image into a suitable format for the face recognition component. The 
facial recognition component compares the extracted facial image with images in its own 
embedded user knowledge database. If it matches any image in the database, nothing 
happens. If it does not match any image in the database, it is assumed that the person is an 
intruder and an alarm is activated. 
 
 


 
Figure 42. SMS Architecture. 


 
 


8.2.1 System and Component Domains 


The input domain complexity of the components in SMS is higher than the domain 
complexity in the mathematical computation example discussed in previous chapters. The 
input domain for the system is based on image files. These image files have size-related 
attributes, such as width and height, which may be used as elements to characterize the input 
domain. 
 
However, there is an important semantic content in the image that can not be characterized 
considering only the size-related attributes, as mentioned in Section 5.2.2. Examples of 
semantic content are all facial properties of the people contained within the image file. This 
issue is addressed by defining a differentiation ontology, as discussed in Chapter 5. Figure 43 
shows the set of attributes associated with the input domain for the SMS assembly. This 
ontology groups all attributes from the respective component ontologies.  
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Figure 43. SMS Differentiation Ontology. 


 
Figure 44 shows the corresponding differentiation ontology defined for the Face Detection 
Component. This is the same ontology described in Section 4.4.2. 
 


 
Figure 44. Face Detection Component Differentiation Ontology. 
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Figure 45 and Figure 46 show the differentiation ontology defined for the Face Recognition 
Component and the Image Converter Component, respectively.  
 


 
Figure 45. Face Recognition Component Differentiation Ontology. 


 


 
Figure 46. Image Converter Component Differentiation Ontology. 


 
All test cases found in every component test profiles are organized based on such 
differentiation ontologies. 
 


8.2.2 Artifacts 


The most relevant artifacts in this case study are the set of component test profiles, the 
assembly operational profile, and the reliability assessment artifact.  
 
The format and content of all component test profiles is similar to that shown in Table 13 and 
Table 14 (c.f., page 55). The number of component test cases is shown in Table 25. The set 
of test cases was obtained from training datasets developed by the research community 
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working on face recognition (Grgic and Delac 2007). The number of initial test cases was 
higher, but they were reduced after using the differentiation ontologies defined for each 
component.  
 
 


Component Number of Test Cases 
Before Classification 


Facial Detection 624 
Image Converter 200 
Facial Recognition 230 


Table 25. Number of Test Cases Performed for SMS’s Components. 
 
The assembly operational profile defined for this system uses the differentiation ontology to 
characterize three subdomains. It is assumed that the system is located in a building where 
three areas are monitored, namely, production, corporate, and storage areas. Every area has 
its own properties defined by the people working there and its corresponding environmental 
conditions. Three different operational sub-domains are defined for the system: 


• Subdomain 1 (corporate area). This area is considered for male population with 
additional specific attributes. The probability for this sub-domain is 0.254. 


• Subdomain 2 (storage area). This area is considered for female population using 
protection glasses with additional specific attributes. The probability for this sub-
domain is 0.068. 


• Subdomain 3 (production area). This area is considered for male population with 
additional specific attributes. The probability for this sub-domain is 0.678. 


 
The complet assembly operational profile defined for this system is shown in Table 16 (c.f., 
page 69). 
 


8.2.3 Assembly Composition and Prediction 


Statistical prediction models such as artificial neural networks or classification trees could 
not be used as prediction techniques in this case study. Experiments using these statistical 
techniques did not show good predictive results. Thus, we use the best binary matching 
technique during the composition process. 
 
The composition follows the model defined in Section 6.4.2. In this case, the composition 
uses the test cases defined for the first component in the assembly. Then, the composition 
model finds the best matching point in the second component connected in the assembly. 
Similarly, using the best matched test case in the second component, the composition looks 
for the best matched test case in the third component.  Using these test cases, the composite 
execution trace is produced. 
 
The experimental metric described in Section 6.4.1, named as cumulative error in selection, 
is shown in Table 26. This metric represents the normalized average number of different bits 
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found in the composite test case. For example, the smallest cumulative error in selection is 
0.278. This value means that the 27% of the bits are different. 
 
 


Subdomain Cumulative Selection 
Error 


Number of Test 
Points 


1 0.825 310 
2 0.278 34 
3 0.798 182 
Table 26. Subdomain Cumulative Selection Error. 


 


8.2.4 Reliability Assembly Assessment 


The reliability model uses execution node probabilities of failure as basic units. A partial list 
of the execution node probabilities of failure is shown in Table 27. The number within 
brackets denotes the subdomain associated with the estimation.  
 


Component 
Execution 


Node 
Occurrences 


Probability of  
Failure  


FACE DETECTION[1] A1 310 3.205E-03 
FACE DETECTION[1] A2 310 3.205E-03 
FACE DETECTION[2] A1 34 2.778E-02 
FACE DETECTION[2] A2 34 2.778E-02 
FACE DETECTION[2] A5 34 2.778E-02 
FACE DETECTION[2] A7 34 2.778E-02 
FACE DETECTION[2] C7 34 2.778E-02 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
IMAGE CONVERTER A1 202 4.902E-03 
IMAGE CONVERTER A2 202 4.902E-03 
IMAGE CONVERTER A3 100 9.804E-03 
IMAGE CONVERTER A5 202 4.902E-03 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
FACE RECOGNITION A1 230 4.310E-03 
FACE RECOGNITION A2 230 4.310E-03 
FACE RECOGNITION A3 230 4.310E-03 
FACE RECOGNITION A4 460 2.165E-03 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 27. Partial List of Execution Node Probabilities of Failure. 
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Finally, using the reliability model described in Chapter 7, the estimation of the assembly 
probability of failure (i.e., point and interval estimation) is shown in Table 28. This table also 
shows the corresponding subdomain probabilities of failure. Similar to other artifacts, a 
Reliability Assembly artifact template is described in Appendix B. 
 


Subdomain 
Subdomain 


Probability of Failure 
Number of 
Test Points  


Subdomain Operational 
Probability 


1 0.1113 310 0.254 
2 0.4001 34 0.678 
3 0.1445 182 0.068 


 


ASSEMBLY PROBABILITY OF FAILURE  
(Point Estimation) 


= 0.309352474 


ASSEMBLY PROBABILITY OF FAILURE  
(Interval Estimation, 90%) 


= ( 0.26567, 0.35890) 


Table 28. SMS Assembly Reliability Assessment. 
 


8.2.5 Discussion 


The probability of failure obtained from the assessment is a measure about the degree of 
failure-free operation confidence provided by the component test profile information. In this 
case, the assessment estimates a considerable probability of failure (i.e., 0.30935). Intuitively, 
the circumstances originating this value are related with the high operational probability 
specified for the second subdomain (i.e., 0.678) and the small number of test cases associated 
with such subdomain (i.e., 34 test cases). This number of test cases does not provide enough 
evidences of the failure-free component operation in such subdomain. 
 
The composition process was performed following the composition model described in 
Chapter 6. The selection of prediction models is an issue in this case study. The prediction 
model for these components used the BBMT due to the poor performance of other statistical 
models. The reasons for such weak performance were the small number of test cases defined 
for every component and the high number of categorical variables defined for the input 
domain in every component.  
 
The operational specification of this assembly used differentiation ontologies to characterize 
the components. However, the creation of the component test profiles required a considerable 
effort. The time required for the test case classification was particularly high. The 
instrumentation and component testing were performed with no significant overhead. 
 
The relevance of this case study comes from the information provided to support the claims 
defined in this dissertation. Table 29 shows the most important claims and the evidence 
provided by the case study. 
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Claim Comments and Evidences 


It is feasible to collect reliability-related 


information from the testing process 


The execution trace information was collected 
using source code manual instrumentation and 
a simple library that implemented the 
monitoring infrastructure. 


Operational information can be specified in 


a well-suited form that improves the 


reliability assessment. 


The operational information was modeled 
using the notation proposed by the UML 
profile. This information was used for the 
reliability assessment. 


It is feasible to compose execution trace 


information from partial information of 


different components 


The prediction used the BBMT. Other 
prediction models did not show good results 
because of the reduced number of test cases 
and the input domain characteristics. 
 
The composition process uses as covered 
criterion the best matched test cases. 
 


It is feasible to produce a meaningful 


(significant, useful) reliability assessment 


of software component assemblies, before 


their actual integration, based on (i) 


component abstract execution information 


collected  in (ii) a limited number of 


previously executed component test cases 


and (iii) information about the expected 


assembly use. 


The results from the case study provide 
evidence to support this claim. However, the 
uncertainty of the prediction model seems to 
play a key role in the assessment.  


Table 29. Claim Evidences Comments for SMS Case Study. 
 
This case illustrates the applicability of the framework. However, there are two issues to be 
considered before using the framework: the uncertainty of the prediction models and the 
required effort for test point classification. These issues are discussed in Section 8.4. 
 


8.3 Case Study: Compression-Encryption Assembly 
This section describes a case study of a Compressing-Encrypting Assembly (C&E). The 
C&E goal is to compress and encrypt character streams (i.e., strings). This assembly is used 
as a part of a secure communication system. Figure 47 shows the architecture for this 
assembly. The C&E assembly has two software components, namely, the compression 
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component and the encryption component. These components are inter-connected defining a 
dataflow architectural style. The compression component processes an input string with some 
additional parameters. The output of such component is a smaller string. The encryption 
component receives this compressed string and it performs an encryption process on the 
compressed string. The output of such component is the compressed and encrypted string. 
 


 
Figure 47. C&E Architecture. 


 


8.3.1 System and Component Domains 


The input domain for the assembly is less complex than the previous case study (i.e., SMS 
assembly). The input considered for the system is based on strings. The physical information 
provides enough information to characterize the operational subdomains. In this case, the 
input domain defined for every component uses the size and string diversity with additional 
parameters. String diversity represents the heterogeneity of characters found in a string. 
 


8.3.2 Artifacts 


This assembly is used to compress and encrypt strings for a security module that stores 
emails, passwords, and answers to secret questions. The scenarios defined for the assembly 
are:  


• Subdomain 1 (password encryption). This subdomain is defined as the set of strings 
representing passwords. The probability for this sub-domain is 0.50. 


• Subdomain 2 (secret answer). This subdomain is defined as the set of strings 
representing answers to the secret question that is used to reset account passwords. 
The probability for this sub-domain is 0.250. 


• Subdomain 3 (email address). This subdomain is defined as the set of strings 
representing user email addresses. The probability for this sub-domain is 0.250. 


 
Table 30 shows the operational profile associated with the C&E assembly. Subdomains use 
the length of the string (i.e., using the symbol “| |”) and the allowed character sets (i.e., using 
PERL regular expressions) to characterize the input data. 
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Assembly Name C&E Assembly 
Purpose Compress and Encrypt a character stream. 
Assembly 
Specification 
 
 


 
 


Quantitative Model 
 


Subdomain Description (InputString)  
Subdomain Characterization Probability 


Comments 


Password 1 
|InputString| > 6   AND 
|InputString| < 12 AND 
InputString in PRegExp  


0.50  


Secret 
Answer 


2 
|InputString| > 1  AND 
|InputString| < 50    


0.25  


Email 
Address 


3 
|InputString| > 1   AND 
|InputString| < 25 AND 
InputString in MRegExp   


0.25  


 Regular Expressions 


 PRegExp = [a-zA-Z][\w\.-]*[a-zA-Z0-9] 
MRegExp = [a-zA-Z][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\w\.-]*[a-zA-Z0-9]\.[a-zA-Z][a-zA-Z\.]*[a-zA-Z] 


Table 30. C&E Assembly Operational Profile. 
 
The component test profiles defined for this assembly are both similar in their information 
structure. Table 31 shows the Compression Component Test Profile. The encryption 
component test profile required some modifications to achieve the composition process, as 
discussed later in this section. The numbers of test cases contained in the compression and 
encryption component were 1000 and 2000, respectively. 
 


8.3.3 Assembly Composition and Prediction 


Artificial neural networks were selected as prediction models. The number of test points and 
their randomness allowed the generation of good prediction models since the mean square 
error for each component is less than 15%. However, the second component characterization 
was modified because the matching condition required other additional attributes. 
 
The composition used a matching condition defined over the length of the strings and the 
string diversity. The string diversity represents the heterogeneity of characters found in the 
string. For example, the string “AABCBBACB” has lower string diversity than 
“ABCVFFGHWERTS”. String diversity is defined as the number of different characters 
found in a specific string.  
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Component Test Profile 


Component Name Compression Component 
 


Component 
Functionality 


Functionality Signature Domain Description 


Compress an String Compress(inputString, compLevel, 


compStrategy): outputString 
 
inputString: Parameter that contains the string 
that is compressed.  
outputString: Return value that represents the 
compressed string 
CompLevel: Parameter representing the 
compression level. 
CompStrategy: Parameter representing the 
compression strategy. 


Implemented 
inputString < 1.2 GB 
outputString < 1.2 GB 
compLevel ∈ {1, 2, 3, 4} 
compStrategy ∈ {1, 2, 3} 
    


 
Test Data 


Test Case 
Number 


Input String8 
Compression 


Strategy 
Compression 


Level 
Expected 


Output String 
Execution 


Trace 
Test 


Result 


1 
3Hbcfh28Pd70
Op1tNJ83tO10
UIw8Afc9e… 


1 1 
0wQ6U2OAG
or95kgYJjeRr
r56t… 


A1B1B1C1
D1D1… 


Correct 


2 
7jaH5rB51nrY
327Ckp1xSw8
FF683XckR4s
58lsT6gj… 


1 2 


7jaH5rB51nr
Y327Ckp1xS
w8FF683Xck
R4… 


A1B1B1C1
D1E1D1E1
… 


Correct 


3 23GF1Uj4C8L
4J8… 


1 1 SW77jDWUc
Z311… 


A1B1B1C1
D1D1… 


Correct 


4 RGeczVq5fImc
5sTs24v… 


1 2 
H7Xq54Y3A6
6tZ8ak2zX5yt
toU1uG… 


A1B1B1C1
D1E1D1E1
… 


Correct 


5 
kYmX095v8JO
16384rw1E219
If… 


1 1 
90hv7D3qHV
HQ0YAm4zo
o2Kq6Gjf.. 


A1B1B1C1
D1D1… 


Correct 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 31. Compression Component Test Profile. 


 
String diversity and string length were the input parameters characterizing the second 
component. This extended characterization did not change the uncertainty of the prediction 
model. Table 32 shows a partial list of the modified test points in the second component test 
profile.  
  


                                                 
8 The symbol “…” denotes that more characters are omitted from the text. 
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Test Data 


Test Case 
Number 


Input String 
String 
Length 


String 
Diversity 


Expected 
Output String 


Execution 
Trace 


Test 
Result 


1 
3Hbcfh28Pd70
Op1tNJ83tO10
UIw8Afc9e… 


1225 145 
0wQ6U2OAG
or95kgYJjeRr
r56t… 


A2B2B2C2
C2C2… 


Correct 


2 
7jaH5rB51nrY
327Ckp1xSw8
FF683XckR4s
58lsT6gj… 


45334 117 


7jaH5rB51nr
Y327Ckp1xS
w8FF683Xck
R4… 


A2B2B2B2
B2B2… 


Correct 


3 23GF1Uj4C8L
4J8… 


88 67 SW77jDWUc
Z311… 


A2B2B2C2
C2C2… 


Correct 


4 RGeczVq5fImc
5sTs24v… 


978 74 
H7Xq54Y3A6
6tZ8ak2zX5yt
toU1uG… 


A2B2B2C2
C2C2… 


Correct 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Note: The symbol “…” denotes that more characters are omitted from the text. 


 
Table 32. Modified Test Data Section from the Encryption Component Test Profile. 


 


8.3.4 Reliability Assembly Assessment 


Similarly to the previous case study, a partial list of execution node probabilities of failure is 
shown in Table 33.  
 


Component 
Execution 


Node 
Occurrences 


Probability of  
Failure  


COMPRESSION[1] A1 430 2.31E-03 
COMPRESSION[1] B1 175 5.65E-03 
COMPRESSION[1] C1 255 3.89E-03 
COMPRESSION[1] D1 125000 8.00E-06 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
ENCRYPTION A2 1093 9.13E-04 
ENCRYPTION B2 994 1.00E-03 
ENCRYPTION B3 1874 5.33E-04 
ENCRYPTION B4 22344 4.48E-05 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 


. 
Table 33. C&E Assembly Execution Node Probabilities of Failure. 
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Finally, using the reliability model described in Chapter 7, the estimation of the assembly 
probability of failure (i.e., point and interval estimation) is shown in Table 34. This table also 
shows the corresponding subdomain probabilities of failure.  
 


Subdomain 
Subdomain 


Probability of Failure 
Number of 
Test Points  


Subdomain Operational 
Probability 


1 0.0109 430 0.50 
2 0.0340 350 0.25 
3 0.0217 220 0.25 


 


ASSEMBLY PROBABILITY OF FAILURE  
(Point Estimation) 


= 0.019375 


ASSEMBLY PROBABILITY OF FAILURE  
(Interval Estimation, 90%) 


= ( 0.01167, 0.02254) 


Table 34. C&E Assembly Reliability Assessment. 
 


8.3.5 Discussion 


This case study exposes two important issues impacting the practical utilization of the 
framework. The first aspect is the work required to adapt the characterization of the second 
component (i.e., encryption component). This issue may impact the scalability of this 
approach since it is required to perform a deep analysis on every component connection. This 
analysis is based on the matching criterion defined for the component assemblies.  
 
The second issue is the input domain re-characterization feasibility. It is possible that a 
domain re-characterization may require a considerable effort. This issue includes the effort 
required to implement the matching criterion in the tool performing the composition. This 
tool may require the implementation of sophisticated mechanisms to verify the matching 
condition. 
 
The C&E reliability assessment shows a relatively small probability of failure (although the 
qualification depends on the specific context). The number of test points is not as small as in 
the previous case study.  
 
The most relevant issue during the composition process was the additional work to re-
characterize the input domain for the second component. The prediction model used artificial 
neural networks with good prediction results.  
 
The assembly operational specification contains subdomains characterized by the structure 
and content of the input strings. In this case, the characterization of such subdomains was 
specified using PERL regular expressions.  
 
Table 35 shows the most important claims and the evidence provided by this case study. 
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Claim Comments and Evidences 


It is feasible to collect reliability-related 


information from the testing process 


The execution trace information was collected 
using semi-automatic instrumentation and 
using the monitoring infrastructure mentioned 
in Chapter 4.  


Operational information can be specified in 


a well-suited form that improves the 


reliability assessment. 


The UML profile was used to model the 
operational information The information in the 
model was used for the reliability assessment. 


It is feasible to compose execution trace 


information from partial information of 


different components 


The prediction model used the artificial neural 
network technique. Even with the modification 
in the Encryption Component Test Profile, 
artificial neural network provided good results. 
 
The composition was performed using the 
model described in Chapter 5. However, the 
composition required some modifications to 
the component test profile of the second 
component.  
 


It is feasible to produce a meaningful 


(significant, useful) reliability assessment 


of software component assemblies, before 


their actual integration, based on (i) 


component abstract execution information 


collected  in (ii) a limited number of 


previously executed component test cases 


and (iii) information about the expected 


assembly use. 


The results from this case study provide 
evidences to support this claim. The reliability 
assessment was performed on the composite 
model following the mathematical model 
defined for the reliability estimation.  


Table 35. Claim Evidences Comments for C&E Case Study. 
 
These two case studies have provided evidence and experiences allowing a critical discussion 
about the framework, models, and artifacts supporting the reliability assessment, as it is 
discussed in the next section. 
 


8.4 Evaluating the Framework 
This section discusses the results obtained after using the framework. Specific issues for 
some models and artifacts are also discussed. 
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8.4.1 Composition Model Evaluation 


Theoretical vs Practical Approach. The theoretical rationale supporting the composition 
model is shown in the examples and case studies. From a theoretical perspective, the 
composition model is feasible and correct. From a practical perspective the composition 
model can be automated and extended to handle other architectural styles.  
 
However, two issues in the composition process impact its applicability in real scenarios: The 
definition of the matching criteria and the characterization of input and output domains. 
These issues are at the heart of the composition mechanism. Case studies show that the 
determination of the matching criteria is not as trivial as the basic mathematical assembly 
example. There are cases where the definition of such criteria requires a considerable effort 
not only in the matching criterion definition, but also in the re-definition of the component 
domain characterization.  
 
Architectural Style. The composition model only considers sequential component 
assemblies. This constraint reduces the scope of the framework applicability since other 
popular architectural styles are not included. However, this architectural style can be 
extended to handle other architectural styles such as procedure-call. This extension is easy 
from a theoretical point of view but it requires some additional monitoring infrastructure to 
be done in practice. 
 


8.4.2 Prediction Model Evaluation 


Theoretical vs Practical Approach. The theoretical rationale supporting the prediction is 
sustained by evidences found in the examples and case studies. The use of prediction models 
is a correct approach to address the problem of limited information. However, case studies 
shown the real complexity of such problem. This research used only two techniques to define 
prediction models. The selection of good prediction models requires a detailed analysis of 
every situation on a case by case basis and exploring distinct techniques. The practical use of 
different prediction models might require advanced training.  
 
Limited Number of Techniques Explored. The number of prediction techniques explored 
in this dissertation includes just two statistical techniques since the goal was to illustrate the 
applicability of the framework rather than to perform an exhaustive research work on 
prediction models. Specifically, the goal was to show how to overcome the problem of 
having a limited amount of information.  
 
BBMT Maturity. The Best Binary Matching Technique is an experimental technique that 
requires more research and analysis. Particularly, the practical interpretation of the error in 
prediction requires special attention. This technique, however, seems a promising approach 
since it can be automated and extended. The extension might include the results from a 
correlation analysis between attributes, the attribute importance, and the dependency among 
the attributes. 
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8.4.3 Reliability Model Evaluation 


Assessment Interpretation. The reliability assessment provided by the reliability model is 
interpreted as a measure about the degree of certainty of a failure-free operation. The early 
assessment is important since it provides quantitative information during the early stages of 
the development process. This measure uses the information provided in the test profiles. 
Intuitively, a large number of test points will produce a better estimation (i.e., a smaller 
probability of failure).   
 
The reliability value produced by the framework gives a pessimistic estimation of the 
probability of failure since this model assumes that having more information is better than 
having less information. For example, consider a component having some paths defined by 
exception handlers. It is possible that those execution nodes have a high probability of failure 
since they are rarely visited. This situation introduces test points having a considerable 
probability of failure and affecting the overall estimation. 
 
Another issue in the reliability estimation is derived from the execution node probability of 
failure estimation. The information collected from execution traces do not allow to 
differentiate similar or identical execution node instances. This limitation comes from the 
assumption that all execution node instances are different since they are produced using 
distinct input parameters. This assumption might not hold in the general case. However, the 
reliability model can be extended to handle different assumptions to estimate the execution 
node probability of failure without modifying the other estimations (i.e., test case probability 
of failure, subdomain probability of failure, and domain probability of failure). 
 
Comparison with Other Models. The comparison of reliability models is not an easy task. 
The heterogeneity and diversity of such models makes it difficult to establish a fair 
comparison. In addition, the real effectiveness of such models is closely connected with the 
testing strategy used to find failures.  
 
The reliability model described in Chapter 7 can be classified as a combination of an 
architectural composite model and an input-domain model. The model follows an 
architectural composite approach since it combines the architectural information found in the 
execution traces and then it estimates the overall component reliability. In addition, this 
model follows the input domain approach since the execution node probabilities of failure are 
estimated considering strictly the number of successful runs. This combined approach makes 
this model a generalization of the input domain model defined by (Farr 1983). The input 
domain model represents an assembly that has only one component with one execution node.  
 
Theoretical vs Practical Approach. The theoretical rationale supporting the reliability 
estimation is sustained by evidences found in the examples and case studies. The 
applicability of such model in real scenarios depends on the amount of information. 
Particularly, the point estimation does not require as much computational resources as the 
interval estimation. Case studies had a relatively large number of test cases and the 
corresponding estimation did not require high-powered computing resources. 
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Replication. The point estimation can be easily replicated based on the information from the 
assembly test profile. This replication is helpful in validating different implementations of 
the model. The interval estimation, however, is not suitable for being exactly replicated 
because the randomness in the Bootstrap sampling method. This issue can be addressed by 
using a larger bootstrap sample. 
 
Relevance of the First Component in the Assembly. The test points from the first 
component in the assembly guides the test point composition. The use of these test cases, 
instead of predicting test cases, reduces the uncertainty in the estimation. However, using 
such points has an impact on the estimation since a small number of test points in the first 
component might impact the overall estimation even if the subsequent components in the 
assembly have a large number of test points. 
 


8.4.4 Operational Information Evaluation 


Notation. The notation proposed in this dissertation is compatible with industrial modeling 
techniques based on UML. This compatibility makes the notation easy to learn and to use. 
The critical part of such notation relies on the model construction and its consistency. The 
verification of consistency is critical when modeling constructs are extended to collect 
operational information. The proposed notation does not prescribe any language to model 
such consistency rules. However, there are tools that verify constraints of models based on 
OCL predicates (Gogolla et al., 2003). 
 
Gathering Operational Information. This research does not address the issue of collecting 
operational information. The technology behind the framework can be used to collect such 
kind of information during field-testing. The monitoring infrastructure and the 
instrumentation technology can be adapted to collect other information such as the operations 
performed by the system. Using this approach, operational information can be collected and 
analyzed using the framework. 
 
Integration to the Development Process. The task of defining operational models is 
suitable for being incorporated into a development process which uses architectural models.  
However, deriving assemblies for reliability assessment requires a deep understanding of the 
system requirements and the existence of a system architecture specification. 
 


8.4.5 Component Test Profile Evaluation 


Creation and Classification. Test Profile creation requires a considerable effort for 
collecting and organizing all the information in settings where the information is not properly 
organized. Particularly, the classification of test cases may need additional work when the 
domain is complex. Another issue is the instrumentation procedure that may require 
sophisticated tools requiring specialized training. However, these issues can be solved by 
incorporating such classification during the test case generation and developing tools to 
instrument the source code as a part of the development infrastructure.  
 







 


- 128 - 


Source of Information. The use of Component Test Profiles represents a feasible approach 
for collecting information into an organized artifact. The advantage of defining a metamodel 
for such artifact is that it allows the extension and tailoring for different needs. However, the 
success of using such an artifact requires having tools to manipulate, store, export, and 
analyze all the information contained in the component test profile.  
 
Domain Characterization and Re-Characterization. Case studies showed some critical 
issues in the composition process. Particularly, the effort required to re-characterize an input 
domain to enable the composition process. This issue introduces a practical limitation to the 
automatic composition since it is required to have a compatibility analysis prior to 
performing the composition. However, this issue can be managed if the development 
organization has sufficient knowledge and experience in the application domain.  
 


8.4.6 Framework Evaluation 


Theoretical vs Practical Approach. The theoretical rationale supporting the framework 
feasibility is intuitively described by the examples and case studies. The framework 
performance is correct since it produces estimates according to the quality of the data 
contained in the component test profiles. The general application of the framework requires 
consideration of critical issues such as the composition process (specifically the definition of 
the matching condition), the selection of prediction models, the domain characterization for 
composition purposes, and data management. These issues might become more complex for 
larger assemblies.  
 
Scalability. The framework is theoretically capable of assessing larger assemblies with 
complex components. However, the scalability of this framework is constrained by the 
critical issues previously mentioned. The evidences provided in case studies do not 
empirically support the assessment of larger assemblies.  
 
Applicability and Scope. This framework is designed to reason about evidence contained in 
the component test profiles. The framework is not designed to assess designs or other forms 
of abstract specifications. The framework proposed in this dissertation is completely related 
with the testing results and the corresponding execution information. This framework can be 
used to assess any kind of software assembly that can be seen as a sequential assembly of 
components (e.g., embedded software, business software, or scientific software). 
 
Data Quality. The framework does not incorporate mechanisms to analyze the data for 
properties such as freshness and randomness. Nevertheless, this kind of analyses can be 
easily incorporated but they are not covered in the framework described in this document.  
 


8.5 Summary 
This chapter has addresses the major claim: “It is feasible to produce a meaningful 


(significant, useful) reliability assessment of software component assemblies, before their 


actual integration, based on (i) component abstract execution information collected  in (ii) a 
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limited number of previously executed component test cases and (iii) information about the 


expected assembly use.” Two case studies were described and discussed. Specific issues for 
all models, some artifacts, and the framework were discussed.  
 
The next chapter will present the conclusions and future research directions derived from the 
research presented in this dissertation.  
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Chapter 9  


Conclusions and Future Research 


This chapter provides a summary of the contributions described in this dissertation. 
Furthermore, future research directions based on this work are also presented.  
 


9.1 Contributions 
The framework addresses the problem of the early assembly reliability assessment by 
considering internal component execution information (i.e., execution traces) and the 
expected use of the system. This assessment uses a composite model produced from the 
component test profile composition process.     
 
Specifically, the main contributions derived from this dissertation include: 
 
1. A novel approach for the reliability assessment of software component assemblies based 


on partial information about the component testing process before the actual integration 
of the system. This approach is instantiated as a framework composed of artifacts, tasks, 
and models. This approach is unique since (i) it combines information from the 
component testing process to predict the composite execution behavior of such 
components (i.e., assembly), (ii) it assess the reliability of the assembly using execution 
information and the expected assembly usages, and (iii) it is a practical framework having 
tasks, artifacts, and models. 


2. A new artifact, called the Component Test Profile. This artifact organizes and 
consolidates information obtained from the component software testing process. This 
artifact extends the “traditional” testing information to include execution-related 
evidences (i.e., execution traces).  


3. A strategy to monitor execution-related information which uses a combination of source 
code instrumentation and a run-time monitoring infrastructure. 


4. A technique to characterize complex domains, called the Domain Characterization 
Method.  This technique uses tools from ontological engineering. The goal of this 
technique is to provide a domain characterization when the domain physical stored 
information does not provide enough information for differentiating data items for testing 
purposes. 
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5. A UML-based notation, referred to as the UML Operational Characterization Profile, 
designed to specify operational information. This notation is compliant with UML 2.0 
and it extends the modeling capabilities of classifier constructs in UML. 


6. A formal composition model based on component test profile information. This 
formalization defines a matching criterion between the domains from two connected 
component test profiles to characterize the composition mechanism. 


7. A strategy to handle the limited amount of information based on well-known prediction 


models. The models used in this research include artificial neural networks and 
classification trees. 


8. An experimental matching technique that is used when statistical prediction models do 
not provide good results. This technique abstracts test points as binary chains. The 
selection mechanism finds the most similar binary chain from a set of chains. This 
technique is called the Best Binary Matching Technique. 


9. A reliability prediction model for software assemblies which combines execution trace 
information described in the component test profiles and the assembly expected usages 
described in the assembly operational profile. The model includes point and interval 
estimations.  


10. A set of artifact templates used in all phases of the framework. 
11. Software tools that partially automate the assessment process are described. 
 
The early reliability assessments produced by the framework are important since they 
provide quantitative information during the early stages of the development process. This 
information can be used in several areas including test planning, component evaluation, and 
architecture evaluation. 
 
The application of the framework opened new research directions that are described in the 
next section. 
 


9.2 Future Research Directions 
The Test Profile Analysis Framework is an extendible assessment framework. The 
extendibility is achieved by refining artifacts and models. For example, extending the 
framework to assess performance requires the incorporation of time-stamp monitoring 
mechanisms and the corresponding theoretical models supporting such analyses.  
 
Future works will address specific research issues in different areas. These areas include 
development of more sophisticated models to predict software execution, to estimate the 
reliability, and to compose information derived from other architectural styles. Other 
research directions will address testing issues having a close relationship with reliability 
assessment. All these research areas are described in the following sections.   
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9.2.1 Software Execution Characterization 


The approach to characterize the component execution considers only the different paths that 
an execution may follow. This technique does not consider the amount of code contained 
within an execution node; the criterion finds execution divergences within the source code. 
Future research will address this issue by investigating other approaches in static software 
analysis. The objective is to provide a better software characterization that can be used 
during reliability assessment. For example, the characterization may include the 
incorporation of the number of statements found in each execution node. This 
characterization can be used to define a better estimator for the execution node probability of 
failure.  
 
These software characterization modifications may require changes in the structure of the 
models used in the framework, particularly the composition and the reliability models.  
 


9.2.2 Software Execution Prediction 


Predicting software execution is a major challenge. Future research will address the problem 
of finding prediction models that include not only the prediction of the execution node 
frequencies prediction but also the sequence prediction (i.e., considering the ordering of the 
nodes).  
 
This research issue direction requires exploring more sophisticated prediction models and 
defining a more comprehensive methodology for the best prediction model selection.  As it 
was described in Chapter 5, defining a universal prediction model may not be feasible given 
the heterogeneity of systems and the diversity of their corresponding attributes.  
 


9.2.3 Software Reliability Assessment Considering Faults and Dependency 


The reliability model presented in this research uses the frequencies obtained from the test 
point analysis and assumes the failure independence between execution nodes. Future 
research will consider failure dependencies among execution nodes. This consideration 
requires modifying the framework to include the prediction of such sequences as described in 
Section 9.2.2. This new assumption will also require modifying the reliability model with 
appropriate statistical models such as Markov Chains.  
 
In addition, the current reliability model assumes that no failure is found in all test cases. In 
practice, the model will need to include failures. The incorporation of failures has to consider 
issues such as the failure pattern defined by the failure occurrence. This issue is difficult and 
it has been initially discussed in works debating the effectiveness of partition testing versus 
random testing (Chan et al.,  1996) (Ntafos 2001) (Chen et al.,  2004)  (Chen et al.,  2006)  
(Hamlet 1994)  (Duran and Ntafos 1984) (Padilla et al.,  2006). Some of these works 
proposes the existence of failure patterns. These kinds of patterns represent recurrent 
structural subsets defined over the system input domain.  
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9.2.4 Extend the Framework to Consider Other Architectural Styles 


The architectural style considered in the framework is the sequential composition structure 
(i.e., data-flow architectures). This architectural style is suitable for small assemblies. 
However, other styles, such as the procedure-call and implicit invocation architectural styles 
(Shaw and Garlan 1996) are popular architectural styles. Future research will include 
investigation of methods for extending the framework to handle the procedure-call architect 
rural style. 
 
The framework can be extended to handle the procedure-call architectural style. 
Nevertheless, there are some practical issues to consider such as the additional capabilities 
required by the monitoring infrastructure and the resources required to store the additional 
information in component test profiles. Changes in the composition model are not as 
complex as the infrastructure required to perform the composition. The composition model 
may require an extended trace substitution mechanism to abstract the procedure calls found 
in the execution traces. The matching criterion is similar to the one used for sequential 
assemblies. 
 


9.2.5 Using the Framework for Assessing Other Properties  


The framework has been used for reliability assessment. The entire infrastructure developed 
seems suitable for assessing other properties, such as performance, latency, and test coverage 
metrics. Future research will explore the assessment of other properties such as performance 
and test coverage metric.  
 
Performance assessment requires the inclusion of performance models (e.g., timing and 
queue models) as well as the monitoring infrastructure modification to handle and collect 
performance time stamps. Test coverage assessment seems easy because of the execution-
related information currently stored in component test profiles. However, it may be required 
to adapt the model for execution trace coverage. Examples of these models include execution 
graph and SDL models (Ellesberger et al.,  1997). 
 


9.2.6 Using Evolutionary Techniques to Find the Best Test Point Distribution 


The use of evolutionary techniques for optimization problems has been used with 
considerable success in different domains (Goldberg 1989) (Larranaga and Lozano 2001) 
(Muñoz-Zavala et al.,  2005). The advantage of such technique relies on its flexibility and the 
minimum assumptions required for the models. Evolutionary strategies are optimization 
techniques based on ideas of adaptation and evolution.   
 
The framework assumes the execution diversity in execution traces.  Future research will 
explore the use of evolutionary techniques to find the minimum set of test points 
characterizing the coverage execution. This characterization will be based on the criteria of 
source code coverage.  
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9.3 Final Remarks 
Software Reliability is a critical attribute in several systems. From a theoretical point of view, 
the contributions presented in this dissertation augment the current theoretical knowledge 
about the software reliability assessment. From a pragmatic point of view, the contributions 
of this work provide solutions to practical problems, thereby helping software architects to 
asses the reliability of software component assemblies according to the expected usage of the 
assemblies.  
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Appendixes 


This section describes additional information about the research presented in this dissertation. 
Appendix A provides a glossary with the most important concepts used in this document. 
Appendix B describes a set of templates for the most important artifacts defined in the Test 
Profile Analysis Framework. Finally, appendix C provides the first version of the formal 
UML profile designed to characterize operational information.  
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A. Glossary 


The symbol * denote definitions taken from the IEEE Standard Glossary of Software 
Engineering (IEEE 1998). 
 
Term Definition 
Abstract Execution 
Graph 


Graph representing the program source code control-flow structure 
represented by execution nodes.  


Artifact An artifact is one of many kinds of tangible byproduct produced during 
the development of software.  Examples of artifacts include class 
diagram, architecture descriptions, test plans, software requirements 
specification, etc. 


Assembly An assembly is an arrangement of two or more components providing a 
complex functionality. This functionality is produced by the 
composition of all component functionalities. 


Component A component is a reusable piece of functionality characterized by its 
input domain and its output domain. In this context, a function or 
procedure is a component. 


Data Constraint A specification about the allowable ranges defined for data attribute 
and its quantitative use distribution. This specification is composed of 
two main elements: the data description and the data distribution. The 
former specifies the nature and the allowable values defined for the 
corresponding data attribute, and the latter specifies the probabilistic 
distribution of such allowable values (ranges, or partitions). 


Data-flow 
Architectural style 


Configuration of elements (processes, modules, components, etc.), 
arranged so that the output of each element is the input of the next. 


Data-flow* The sequence in which data transfer, use, and transformation are 
performed during the execution of a computer program. 


Domain A domain is a set of all possible values that a set may have. When this 
concept is related to a software function, the input domain is the set of 
all possible values that the function may use as input. The output 
domain is the set of all possible values that such function may generate 
as output. 


Environmental 
Constraint 


A constraint about the environment where the system is under 
operation. These constraints include hardware, software, run-time 
environments, user-defined characteristics, etc. 


Execution Node An execution node represents a grouping of source code statements 
based on performing a control flow analysis. 


Execution Time* The amount of elapsed time or processor time used in executing a 
computer program. 
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Execution Trace (1)* A record of the sequence of instructions executed during the 
execution of a computer program. Often takes the form of a list of code 
labels encountered as the program executes. 


(2) A sequence of execution nodes. 


Failure Rate* The ratio of the number of failures of a given category to a given unit 
of measure; for example, failures per unit of time, failures per number 
of transactions. 


Failure* The inability of a system or component to perform its required 
functions within specified performance requirements. 


Fault* An incorrect step, process, or data definition in a computer program. 
Usually the terms “bug” and “error” are used indistinctly.  


Formal 
Specification* 


(1) A specification written and approved in accordance with established 
standards. 


(2) A specification written in a formal notation, often used in proof of 
correctness. 


Function Atomic functionality performed by a system. The combination of one 
or more functions defines an operation. 


Instrumentation* Devices or instructions installed or inserted into hardware or software 
to monitor the operation of a system component. 


Latency* The time interval between the instant at which an instruction control 
unit issues a call for data and the instant at which the transfer of data is 
started. 


Meta-modeling Meta-modeling is the construction of a collection of "concepts" (things, 
terms, etc.) within a certain domain. A model is an abstraction of 
phenomena in the real world, and a metamodel is yet another 
abstraction, highlighting properties of the model itself. This model is 
said to conform to its metamodel like a program conforms to the 
grammar of the programming language in which it is written 


Metric* A quantitative measure of the degree to which a system, component, or 
process possesses a given attribute. 


Model A model is a theoretical construct or conceptual constructs that 
represents something, with a set of variables and a set of logical and 
quantitative relationships between them.  


Monitor * A software tool or hardware device that operates concurrently with a 
system or component and supervises, records, analyzes, or verifies the 
operation of the system or component. 


Operation Major system logical task performed for initiator, which returns control 
to system when complete. 


Operation Group Set of associated operations based on predefined criteria. 
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Operational Mode A major logical system operation mode composed of groups of 
operations under specific conditions. Usually this is a small number 
(from 2 to 8) of operational modes defined for a system.  


Operational Profile An operational profile is a quantitative characterization of the expected, 
recorded, or predicted use of a particular component, assembly, or 
system. 


Performance* The degree to which a system or component accomplishes its 
designated functions within given constraints, such as speed, accuracy, 
or memory usage. 


Petri-Net An abstract, formal model of information flow, showing static and 
dynamic properties of the system. A Petri net is usually represented as a 
graph having two types of nodes (called places and transitions) 
connected by arcs, and markings (called tokens) indicating dynamic 
properties. 


Protocol* A set of conventions that govern the interaction of processes, devices 
and other components within a system. 


Reliability 
Assessment 


Reliability assessment is a quantitative assessment of the reliability of a 
product, system or portion thereof. Such assessments usually employ 
mathematical modeling, directly applicable results of tests on the 
product, failure data, and non-statistical engineering estimates. 


Reliability* Reliability is defined as the ability of a device or system to perform a 
required function under stated conditions for a specified period of time; 
usually the ability is defined as a probability. Software reliability is the 
case when the device or system is a software-based system. 


Scenario Detailed interaction model defined to specify such operational scenario. 


Sequential* Pertaining to the occurrence of two or more events or activities in such 
a manner that one must finish before the next begins. 


Software 
Architecture 


The software architecture of a program or computing system is the 
structure or structures of the system, which comprise software 
elements, the externally visible properties of those elements, and the 
relationships between them. The term also refers to documentation of a 
system's software architecture. 


Software 
Development 
Process* 


The process by which user needs are translated into a software product. 
the process involves translating user needs into software requirements, 
transforming the software requirements into design, implementing the 
design in code, testing the code, and sometimes installing and checking 
out the software for operational activities. Note: these activities may 
overlap or be performed iteratively. See: incremental development, 
rapid prototyping, spiral model, waterfall model. 
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Source Code* Computer instructions and data definitions expressed in a form suitable 
for input to an assembler, compiler or other translator. 


Specification* A document that specifies, in a complete, precise, verifiable manner, 
the requirements, design, behavior, or other characteristics of a system 
or component, and often, the procedures for determining whether these 
provisions have been satisfied.  


Static Analysis (1) Analysis of a program that is performed without executing the 
program.  


(2)* The process of evaluating a system or component based on its 
form, structure, content, documentation. Contrast with dynamic 
analysis. 


Symbolic 
Execution* 


A static analysis technique in which program execution is simulated 
using symbols, such as variable names, rather than actual values for 
input data, and program outputs are expressed as logical or 
mathematical expressions involving these symbols. 


System Abstraction of any run-time program such as a software component, a 
system, or a system of systems. 


Test Oracle A test oracle is a source of expected results for a test case. 


Test point/ Test 
Case 


A test point or test case is set inputs, execution conditions, and 
expected results (i.e., set of test outputs) developed for a particular 
objective, such as to exercise a particular program path or to verify 
compliance with a specific requirement. 


Testing* (1) The process of operating a system or component under specified 
conditions, observing or recording the results, and making an 
evaluation of some aspect of the system or component.  


(2) The process of analyzing a software item to detect the differences 
between existing and required conditions, i.e. bugs, and to evaluate the 
features of the software items. See: dynamic analysis, static analysis, 
software engineering. 


UML The Unified Modeling Language (UML) is a standard language for 
specifying, visualizing, constructing, and documenting the artifacts of 
software systems, as well as for business modeling and other non-
software systems. 


UML Profile UML Profiles are extension of the UML that tailor the language to 
specific areas - some for business modeling; others for particular 
technologies. 
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B. Artifact Templates  


This section describes the templates proposed for the framework artifacts. These templates 
are specified using UML class diagrams representing conceptual models. These models 
specify the information that is suggested for the artifacts. Each template artifact includes the 
UML conceptual model and a suggested artifact document structure.  
 


 B.1 Component/Assembly Test Profile Template 


Component/Assembly Test Profile Meta-Model 
 


 
Component/Assembly Test Profile Suggested Structure 


1. Component/Assembly Description 
2. Component/Assembly Specification 
3. Composition Meta-Data 


a. Composition Model 
b. Composition Accuracy 


4. Test Meta-Data 
a. Domain Description 
b. Invariants 
c. Data Generator 
d. Protocol Description 


5. Test-Data 
a. Test Cases 
b. Test Results 


6. Execution-Information 
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B.2 Assembly Operational Profile Template 


Assembly Operational Profile Meta-Model 
 


 
Assembly Operational Profile Suggested Structure 


1. Component/Assembly Description 
2. Assembly Specification 
3. Operational Modes 


a. Operational Group 1 
i. Operation 1 
ii. Operation 2 


. 
b. … 


4. Basic Functionalities 
a. Function 1 
b. . 
c. . 


5. Domain Descriptions 
a. Subdomain 1 
b. Subdomain 2 
c. …. 


6. Consistency Model 
7. Operational Probability Distribution 


 







 


- 157 - 


B.3 Reliability Assessment Template 


Reliability Assessment Meta-Model 
Reliability Assessment


Bootstrap Sample


Interval Estimation Point Estimation


Subdomain Assessment


Test Point Assessment


Execution Node Assessment


1


*


Component Test Profile


Reliability Model


Reliability::Reliabiity Meta-Data


 
 


Reliability Assessment Suggested Structure 
1. Component/Assembly Description 
2. Reliability Meta-Data 


a. Reliability Model 
3. Reliability Assessment 


i. Point Estimation 
ii. Execution Node Assessment 
iii. Test Point Assessment 
iv. Subdomain Assessment 


b. Interval Estimation 
i. Bootstrap Samples 
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B.4 Assembly Requirement Specification Template 


Assembly Requirement Specification Meta-Model 
 


 
Assembly Requirement Specification Suggested Structure 


1. Assembly Description 
2. Environmental Constraints 
3. Assembly Functional Requirements 
4. Assembly Non-Functional Requirements 
5. Other Assembly requirements 
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ABSTRACT 


The size and complexity of current software system require techniques to optimize the testing 


resources. One recognized approach to handle the limitation of software testing is by using 


operational information.  


Operational information is the specification of the expected use of the system. This specification 


uses probabilities that are assigned to specific system operations. However, there are more 


elements that require being incorporated in such descriptions, such as the hierarchy of the system 


operations, the scenario organization, the constraints, and the corresponding links to the system 


requirement specification.  


This report describes a UML extension allowing the specification of operational information. 


These modeling constructs are defined using the Unified Modeling Language (version 2.0). 


Specifically, these elements are organized as an UML profile. The construction of UML profiles 


is a standard approach to define domain-specific modeling constructs.  


The elements defined within the proposed UML profile include: scenario, operation, function, 


domain, and data constraint. The UML Profile described in this report is named as UML 


Operational Characterization Profile. It follows a metamodeling approach and its organization si 


similar to other UML profiles.  
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INTRODUCTION 


The software is playing a major role in our society. Almost every electronic device contains a 


significant part of software. On the other side, complex and critical machinery such as airplanes, 


automobiles, and medical devices are based on complex and large portions on software. The 


development of such complex software requires robust and reliable methodologies, techniques, 


and technologies [1]. 


In non-software domains, testing is based on statistical models. However, it is until now that 


software industry uses statistical techniques to manage the limited testing resources. This new 


perspective has been adopted following an paradigm that combines the quality control of the 


process with the quality control of the product [2]. 


The quality of the product, defined by attributes such as reliability, has been addressed and 


analyzed for more that 30 years [3, 4, 5]. This long walk of research does not mean that the 


problem is unsolvable. The problem is that the problem conditions are changing constantly. 


Sources of this change are the fast changing technological platforms, paradigms, and the new 


user requirements. Even this dramatic scenario, some generic techniques has been proposed to 


address the estimation of the software attributes such as reliability. One example of such 


techniques is the Software Reliability Engineering [6]. This technique proposes a methodological 


framework where testing efforts are managed using operational information. 


Operational information is a term describing information of the intended or expected use of a 


specific system. This kind of information is usually found in an artifact called Operational 


Profile (the term profile in this artifact does not refer to UML profile).  Figure 1 shows an 


example of the information contained in an Operational Profile of a Web Library System. 
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Operation Probability 


Web Browsing 0.12 


Web Search 0.30 


Web Transactions 0.40 


…. …. 


Total 1.00 


Figure 1  Example of Operational Information. 


Figure 1 shows a subset of the most important operations defined for a system. In this context, an 


operation means a major system operation. Additional to these operations, a quantitatively 


description of the expected use is included (i.e., probabilities).  


The use of operational information provides useful data to manage the testing process. However, 


there is no standard about how to model, specify or analyze operational information.  


An UML profile is an UML extension that focuses on a specific domain. This kind of extensions 


is allowed in the UML language. Examples of such extensions are the UML Testing Profile [7], 


UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and 


Mechanisms [8], UML Profile for Schedulability, Performance and Time [9],  UML Profile for 


System on a Chip (SoC) [10], etc. However, there is no UML profile addressing the issue of 


modeling operational information. 


This report proposes a notation to specify such kind of information. This report is organized as 


an UML Profile. The profile is defined by using a set of metaclasses, as it is proposed in UML 


2.0 [11]. 
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THE UML OPERATIONAL CHARACTERIZATION PROFILE 


1. Scope 


This specification defines a UML extension to represent Operational Information for a particular 


System. This extension reduces the problems of UML 2.0 for the description of Operational 


Information.   


The UML Operational Characterization Profile defines a language for specifying, analyzing, and 


documenting operational information of systems.  This profile defines a modeling language that 


can be used with any system whose operational information can be described using such 


modeling elements. The UML Operational Characterization Profile can be used stand alone or in 


an integrated manner with UML. 


The UML Operational Characterization Profile extends UML with usage-oriented concepts like 


operations, functions, scenarios, etc. Being a profile, the UML testing profile seamlessly 


integrates into UML: it is based on the UML metamodel and reuses UML syntax. 


The UML Operational Characterization Profile is based on the UML 2.0 specification. This 


profile is defined by using the metamodeling approach of UML and it has been conceptualized 


using the next design principles: 


• UML integration: as a real UML profile, the UML Operational Characterization Profile is 


defined on the basis of the metamodel provided in the UML superstructure specification 


and follows the principles of UML profiles as defined in the UML infrastructure 


specification of UML 2.0. 


• Reuse: wherever possible, the UML Operational Characterization Profile makes direct 


use of the UML concepts and extends them. Otherwise, it adds new concepts only where 


it is needed.  
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2. Conformance 


The compliance points are as follows: 


1. UML Operational Characterization Profile: A compliant implementation supports the 


UML profiling mechanism, the UML entities extended by the Operational 


Characterization Profile, and the stereotyped entities of the UML Operational 


Characterization Profile. 


2. MOF-based Metamodel for Operational Characterization: The compliant implementation 


supports all of the entities in the MOF-based metamodel. 


3. Notation: If graphical notation is used, the compliant implementation recognizably 


supports the notation defined by the Operational Characterization Profile specification. 


4. Static Requirements: The compliant implementation checks the specified constraints 


automatically. 


Compliance requires meeting point 1 and/or 2. Points 3-4 are optional and can be claimed in any 


combination. A compliance statement should address every point. 


3. Normative References 


The following normative documents contain provisions which, through reference in this text, 


constitute provisions of this specification. For dated references subsequent amendments to, or 


revisions of, any of these publications do not apply. 


• UML 2.0 Infrastructure Specification [12]. 


• UML 2.0 Superstructure Specification [11]. 


• UML 2.0 OCL Specification [13]. 


• MOF 2.0 Specification [14]. 
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Note – You will find these documents in the OMG Specification Catalog at this URL: 


http://www.omg.org/technology/documents/modeling_spec_catalog.htm. 


4. Terms and Definitions 


This section describes the terms and concepts included in the UML Operational Characterization 


Profile. These concepts are defined as meta-classes within the MOF-based metamodel. 


• Environmental Constraint: An Environmental Constraint is a condition on the 


parameters defining the system environment. These constraints include hardware, 


software, run-time environments, and user characteristics. 


• Data Constraint: A specification of the allowable ranges defined for a set of data 


attributes. This specification is composed of two main elements: the data description and 


the data distribution. The former specifies the allowable values for the corresponding data 


attribute, and the latter specifies the probabilistic distribution of such allowable values 


(ranges, or partitions). 


• Domain: A set of all possible values that any particular program, functionality might 


require or generate.  


• Subdomain: is a subset of values from any specific domain. Usually, a set of subdomains 


forms a partition over a specific domain. 


• Input Domain/ Output Domain: A classification of two different domains where the 


Input Domain refers to the set of all possible values that a specific program requires as 


input and the Output Domain refers to the set of all possible values that a specific 


program generate as output. A program may be characterized by its corresponding Input 


and Output domain. 
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• Function: Atomic functionality performed by a system. The combination of one or more 


functions defines an operation. 


• Operation: Major system logical task performed for initiator, which returns control to 


system when complete. 


• Operation Group: Set of associated operations based on predefined criteria. 


• Operational Profile: Quantitative characterization of the expected or recorded use of a 


system.  


• Scenario: a typical interaction between the user and the system or between two software 


components.  


• Operational Mode: A set of major logical system operations. A system usually has from 


2 to 8 operational modes.  


• System: Abstraction of any run-time program such as a software component, a system, or 


a system of systems. 
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5. Additional Information 


5.1 How to read this specification 


The rest of this document contains the technical content of this specification. Section 6 describes 


the technical elements defining the UML profile. 


Section 6.1 provides an overview and the approach followed to design this profile.  In addition, 


the motivation behind of this work is described. Section 6.2 describes the elements, structure of 


the organization of all modeling constructs. Section 6.3 describes how UML profiles are 


constructed. Section 6.4 describes the metamodel specified for this profile in a MOF style. This 


section describes specific information items for all metaclasses defined in the metamodel such as 


semantics, attributes, operations, and descriptions.  
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6. The UML Operational Characterization Profile  


6.1 Overview 


This section provides an overview and introduction to the UML Operational Characterization 


Profile.  


The term Operational Information describes quantitatively the intended or expected use of any 


system. This information has two key attributes: (i) the information is based on the system user-


perspective, and (ii) the information is designed to be quantitatively specified in terms of 


intended, expected, or recorded use. 


Operational information can be found at three different levels: first, the use can be specified 


using data domains. Second, the use can be specified at the level of functionalities. Finally, the 


third level is a combination of both previous levels. The use of any level of quantification 


depends on the specific system. 


The main motivation for this profile is the need of a specialized modeling constructs for such 


kind of information. Existing UML semantics is capable of modeling and specifying operational 


information. However, there is a need of standardized constructs and notations that facilitates the 


analysis of operational information.  


Similarly to other UML profiles, a set of stereotypes for each UML metaclass are defined for 


specific operational concepts. Additionally, the profile has been designed to define a set of new 


stereotyped modeling elements instead of defining new kind of diagrams. This approach allows 


the use of almost all other UML modeling capabilities.  


The extension includes a new generalization element used to extend the semantic capabilities of 


any classifier (defined in the Kernel package). The generalization element is named as 
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OperationalizableElement. This metaclass allows the incorporation of attributes representing 


operational information.  


The consequence of this extension is that almost any UML model may be “operationalizable”. 


This means that any UML diagram can be “enriched” with measurements of the expected or 


intended use. The consistency and coherence of any UML operationalized model depends on the 


specific system. 


6.2 Structure of the UML Profile 


The UML Operational Characterization Profile is organized in two logical groups of concepts 


that are stored in three different packages: Package for data-related information, package for 


functional information, and a package providing generic support. 


The first package contains constructs to model operational information at data level; the second 


contains constructs to model operational information at function level, and the third package 


contains generic constructs providing support and consistency to all packages.  


The UML Operational Characterization Profile is specified by: 


• Giving the terminology for a basic understanding of the UML Operational 


Characterization Profile concepts. 


• Defining the UML 2.0 based metamodel of the UML Operational Characterization 


Profile. 


• Defining a MOF model for the pure UML Operational Characterization Profile enabling 


the use of the Operational Characterization Profile independent of UML. 


• Giving examples to demonstrate the use of the UML Operational Characterization Profile 


for operational system specification using both architectures (data and functional). 


In case of ambiguities, the UML 2.0 based metamodel takes precedence. 
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6.3 The Profile 


This profile defines limited extensions to the reference UML 2.0 meta-model with the purpose of 


adapting the meta-model to a specific platform or domain. The extension of this profile does not 


change the reference metamodel, and keeps its semantics. 


In UML 2.0, profiles are packages that structure UML extensions. The principal extension 


mechanism in UML 2.0 is the concept of stereotype. Stereotypes are specific metaclasses, having 


restrictions and the specific extension mechanism. Additional semantics can be specified using 


Stereotype features (“attributes” in UML2.0) and new well-formedness rules in the context of a 


profile. 


A UML profile extends parts of the UML metamodel in a constrained way. All new modeling 


concepts must be supported by UML modeling elements. The new attributes must respect the 


semantic of UML modeling elements. All associations are binary associations. The general 


structure of the profile model is the same as the general structure of the metamodel. 


6.4 MOF-based Metamodel 


This section provides a standalone metamodel for the UML Operational Characterization Profile. 


Figure 2 shows the package structure for this profile. This profile is composed of two packages 


named as Data-Oriented Modeling Constructs and Operation-Oriented Modeling Constructs. 


The first package, Data-Oriented Modeling Constructs, defines the basic constructs to model 


data-related operational information such as domains, sub-domains, and data constraints. The 


second package, Operation-Oriented Modeling Constructs, defines the basic constructs to model 


operation-related information, such as function, operations, and operational modes. Finally, the 


third package, Generic Support, defines generic constructs such as environmental constraints and 


measurement consistency model. 
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Figure 2. Package structure within the UML Operational Characterization Profile.  


 


The compliance provided by the MOF-based metamodel is limited to the modeling elements of 


the Operational Characterization Profile. This profile allows the use of any other UML construct 


suitable for operational characterization. 
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6.4.1 Generic Support Package  


 


Figure 3. Generic Support Package. 


Environmental Constraint 


Description and Semantics 


An Environmental Constraint is a condition on the parameters defining the system environment 


(i.e., the conditions of the system execution). 


Associations 


• econstraints:Scenario[1] The scenario that is specified with the environmental 


constraints. 


• domain:Domain[1] The domain that is specified or constrained with the 


corresponding environmental constraint. 
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Attributes 


• Description: String[1]  The description of the specific environmental constraint. 


• Formal Description: String[1] The formal specification of such constraint. 


 


Measurement Consistency Model 


Description and Semantics 


The Measurement Consistency Model represents a set of rules defined over measurement 


attributes in a model for some specific modeling constructs. The rules are defined by Formation 


Rules over the modeling elements and Invariants over such elements. 


Associations 


• operationalProfile: Operational Profile[1] The operational profile associated to the 


specific Measurement Consistency Model. 


Attributes 


• Invariants: String[0..*]  Set of conditions that must be met in the model assuring the 


model consistency.  


• Formation Rules[0..*] Set of predicates on the use of measurements over the 


models defined.  
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Operational Profile 


Description and Semantics 


An Operational Profile is a quantitative specification of the expected use of a system. The 


specification can be defined at different levels: operation level, data level, or a combination of 


both levels.  


Associations 


• consistencyModels: Measurement Consistency Model[0..*]  The consistency models 


defined  for an specific operational profile. 


• system:System[1..*] The system that the Operational Profile specifies. 


• modes:OperationalMode[1..*] The operational profile is composed of one or more 


operational modes covering the entire major functionalities 


of the system. 


OperationalizableElement 


Description and Semantics 


The OperationalizableElement is used to extend the modeling capabilities for measurement 


specification. The attributes defined in this class, which are extended to all classifier modeling 


constructs, allow the specification of constraints and invariants over any model that uses this 


feature.  


Attributes 


• UseType: String[1]  This attribute specifies the use of the measurement. Using 


this parameter allows the inclusion of such measurement in 
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the invariants defined in the Measurement Consistency 


Models.  


• Measurement:Value[1] Te measurement or value defined for the modeling 


construct.  


 


Scenario 


Description and Semantics 


A Scenario is a typical interaction between the user and the system or between two software 


components. A scenario can be described as a set of scenarios following a structured 


organization such as a state chart. 


Associations 


• subScenarios: Scenario[0..*]  An scenario may represent a structured set of scenarios 


following a hierarchy.  


• environmentalContraint: Environmental Constraint[0..*] The environmental constraints 


defined for an specific scenario. 


Attributes 


• Name: String[1]  This attribute specifies the name of the specific scenario.  


• Context:String[1] This attribute is a textual description of the context where 


the scenario may occur.  
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System 


Description and Semantics 


A system is an abstraction of any run-time program such as a software component, a system, or a 


system of systems 


Associations 


• operationProfile:Operational Profile[1..*] The operational profile defined for the system. 


Attributes 


• Name: String[1]  This attribute specifies the name of the system.  


6.4.2 Data-oriented Modeling Constructs Package 


 


Figure 4. Data-oriented Modeling Constructs Package. 
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Data Constraint 


Description and Semantics 


A specification of the allowable ranges defined for a set of data attributes. This specification is 


composed of two main elements: the data description and the data distribution. The former 


specifies the allowable values for the corresponding data attribute, and the latter specifies the 


probabilistic distribution of such allowable values (ranges, or partitions). 


Associations 


• subDomain:SubDomain[1]  The subdomain which above the constraint is defined. 


Attributes 


• Description: String[1]  The textual description of the constraint.   


• FormalDescription: String[1] The formal description used in the constraint. 


Domain 


Description and Semantics 


A Domain is a set of all possible values that any particular program, functionality might require 


or generate.  


Associations 


• subDomains:SubDomain[1..*] The set of subdomains that represents the domain.  


• constraints:EnvironmentalContraint[0..*] The set of environmental constraints defined 


for the subdomain. 


Attributes 


• Name: String[1]  The domain name.   
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• Description: String[1] The description of the domain. 


SubDomain 


Description and Semantics 


A Subdomain is a subset of values from any specific domain. Usually, a set of subdomains forms 


a partition over a specific domain. 


Associations 


• subDomains:SubDomain[1..*] The set of subdomains that represents the domain. 


• dconstraints:DataConstraint[ 1..*] The set of data constraints that defines the subdomain. 


InputDomain 


Description and Semantics 


An Input Domain is the domain referred to all input values required by a specific function, 


operation, or program.  


Associations 


• operation:Operation[1] The set of allowed input values defined for the operation.  


OutputDomain 


Description and Semantics 


An Output Domain is the domain referred to all output values produced by a specific function, 


operation, or program.  


Associations 
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• operation:Operation[1] The set of allowed output values defined for the operation.  


6.4.3 Function-oriented Modeling Constructs Package 


 


Figure 5. Function-oriented Modeling Constructs Package. 
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Operational Mode 


Description and Semantics 


An Operational Mode is a set of major logical system operations. A system usually has from 2 to 


8 operational modes.  


Associations 


• operationalProfile:Operational Profile [1] The operational profile that contains the 


operational modes. 


• groups:OperationGroup[0..*] Operations groups are associated to the Operational Model.  


Attributes 


• Mode: String[1]  Operational mode of the system. 


Operation 


Description and Semantics 


An Operation is a major system logical task performed for an initiator, which returns control to 


system when complete. 


Associations 


• functions:Function [1..*] The operation may be composed or defined by at least one 


concrete function. 


• operationGroup:OperationGroup[1] Operations are arranged in operation groups. 


• scenarios:Scenario[1..*] An operation may be described using one or more scenario.  


Attributes 


• Name: String[1]  Operation name. 
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Operation Group 


Description and Semantics 


An Operation Group is a set of associated operations based on predefined criteria.  


Associations 


• operationalMode:Operational Mode [1] An operational mode may be defined by one or 


more operation groups.  


• operations:Operation[1..*] An operation group is a set of operations.  


Attributes 


• Group: String[1]  Operation group name. 


 


Function 


Description and Semantics 


A Function is an atomic functionality performed by a system. The combination of one or more 


functions defines an operation. 


Associations 


• operation:Operation [1] A function is associated to one operation.  


Attributes 


• Name: String[1]  Function name. 
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6.4.4 Merging All Packages 


Figure 6 shows the resulting package (i.e., the Operational Characterization Profile). 
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Figure 6. All Modeling Constructs defined for the UML Profile. 
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7. Examples 


This section presents two examples to illustrate the use of this profile. The first example uses the 


functional-related modeling constructs to specify an operational profile for a WEB Library 


System. The second example uses the data-oriented modeling constructs to define an operational 


profile for a Security Monitoring System. 


7.1 Example 1: WEB Library System 


Figure 7 shows a model representing the operational profile for a WEB Library System. The 


operational profile is specified at the operation level. Four major operations are defined for this 


profile: Review Account, Search Catalogue, Renew Books, and Request Books. Every operation 


has the Measurement attribute denoting the expected use probability. The Measurement 


Consistency Model is defined as an invariant over the measurement attributes in the model. 


 


Figure 7. Web Library System Example. 
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7.2 Example 2: Security Monitoring System 


Figure 8 shows a model representing the operational profile for a Security Monitoring System. 


The operational profile is defined at the data level. The input domain defined for this model is a 


set of attributes over an image file. Three sub-domains are defined for this profile: Production 


Storage, and Corporate Section. Every sub-domain has the Measurement attribute denoting the 


expected use probability. Every sub-domain has a data constraint characterizing the specific 


subdomain. The Measurement Consistency Model is defined as an invariant over the 


measurement attributes in the model. 
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Figure 8. Face-Based Recognition Security System Example. 
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8. Final Remarks and Future Work 


The profile described in this report has been proposed to address the current need of standard 


notations to specify operational information. The UML Operational Characterization Profile has 


been designed to be use with other modeling constructs allowing the use of other UML 


capabilities. 


Future work will focus on: 


• Analyze the semantic compatibility with other UML profiles such as the Test Profile [7] 


and the QoS profile [8]. 


• Include a set of standard measurement consistency models to guide the user to build 


operational models. 
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